
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2012

Proving safety properties of software
Kang Gui
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Engineering Commons, and the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Gui, Kang, "Proving safety properties of software" (2012). Graduate Theses and Dissertations. 12335.
https://lib.dr.iastate.edu/etd/12335

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12335&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12335&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12335&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12335&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12335&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12335&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Fetd%2F12335&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F12335&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/12335?utm_source=lib.dr.iastate.edu%2Fetd%2F12335&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Proving safety properties of software

by

Kang Gui

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Engineering

Program of Study Committee:

Suraj C. Kothari, Major Professor

Srinivas Aluru

Tien Nguyen

Manimaran Govindarasu

Samik Basu

Iowa State University

Ames, Iowa

2012

Copyright c© Kang Gui, 2012. All rights reserved.

www.manaraa.com

ii

DEDICATION

To my parents Yousheng Gui and Jianping Chang

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

ACKNOWLEDGEMENTS . ix

ABSTRACT . x

CHAPTER 1. OVERVIEW . 1

1.1 Dissertation Outline . 3

CHAPTER 2. RELATED WORKS . 5

2.1 Finding Defects of Large Source Code . 5

2.2 Graph Based Program Analysis . 5

2.3 Events Based Program Analysis . 6

2.4 Function Summary . 6

2.5 Other Related Works . 6

CHAPTER 3. A 2-PHASE METHOD FOR VALIDATION OF MATCH-

ING PAIR PROPERTY WITH CASE STUDIES OF OPERATING SYS-

TEMS . 7

3.1 An Overview of the 2-Phase Method . 8

3.1.1 Two Phases . 10

3.2 Macro Analysis Framework . 11

3.2.1 Signatures for Matching Pair Instances 12

3.2.2 Matching Pair Graph . 13

3.2.3 Formal Definition of MPG(X) . 14

www.manaraa.com

iv

3.2.4 Computing MPG(X) . 14

3.3 Micro Analysis Framework . 16

3.3.1 Event-Based Path Optimization . 16

3.3.2 Path Analysis Method . 18

3.4 Validation Using the 2-Phase Method . 19

3.4.1 The Validation Process Using PA Tables 19

3.4.2 Important Optimizations for Validation 20

3.5 Case Study Results . 21

3.5.1 Xinu Case Study . 21

3.5.2 An Example of Validation . 22

3.5.3 Mutex Synchronization in Linux . 25

3.6 Conclusion . 26

CHAPTER 4. PATTERN BASED EMPIRICAL STUDY TO ASSIST WITH

ANALYSIS OF MATCHING PAIR PROPERTY 29

4.1 Identifier Pattern . 30

4.2 Matching Pair Graph Pattern . 30

4.2.1 Matching Pair Graph . 30

4.2.2 Definition of MPG(X) . 32

4.2.3 Computing MPG(X) . 32

4.3 Empirical Study Setup . 33

4.3.1 Experimental Setup . 33

4.3.2 Identification of Lock Operations . 34

4.4 Experimental Results . 34

4.4.1 Identifier Pattern Usage . 35

4.4.2 MPG Pattern Size . 35

4.5 Conclusion and Future Works . 37

CHAPTER 5. PROVING MATCHING PAIR PROPERTY - A CASE STUDY

WITH LINUX KERNEL . 38

www.manaraa.com

v

5.1 Challenges of Matching Pair Property . 38

5.2 Micro Model . 43

5.2.1 Event Flow Graph . 44

5.2.2 Event Trace Graph . 47

5.3 Macro Model . 48

5.3.1 Matching Pair Graph . 52

5.4 Proving Matching Event Properties . 52

5.4.1 Event Signature . 52

5.4.2 Successor and Predecessor Pattern . 56

5.4.3 Matching Difficulty Classification . 57

5.5 Linux Mutex Matching Evaluation . 57

5.5.1 Linux Mutex Matching Evolution . 59

5.5.2 ETG Reduction . 60

5.5.3 Linux Case Analysis . 60

5.6 Conclusion and Future Work . 66

CHAPTER 6. SUMMARY AND CONTRIBUTION 69

APPENDIX A. LIST OF SIGNATURES AND THEIR MATCHING PAIR

PROPERTIES . 70

APPENDIX B. COMPLETE LIST OF MATCHING PAIR PROPERTY

PROOFING RESULT . 79

BIBLIOGRAPHY . 84

www.manaraa.com

vi

LIST OF TABLES

Table 3.1 Signatures in Xinu . 22

Table 3.2 PA table for dswrite() . 22

Table 3.3 PA table for dskenq() . 22

Table 3.4 PA table for dskqopt() . 24

Table 3.5 PA table for dsinter() . 24

Table 3.6 Reductions from the event-based path optimization (EPO) and condition-

based path optimization (CPO) . 25

Table 3.7 Distribution of the size of MPG(X) . 26

Table 4.1 Summary of 9 versions of Linux kernels 34

Table 4.2 Identifer pattern usage in Linux kernels 35

Table 4.3 Distribution of the |MPG(X)| . 36

Table 4.4 Reduction from RCG(X) to MPG(X) 36

Table 5.1 Classification based on successor pattern 59

Table 5.2 Validation Results for 3 versions of Linux Kernel 60

Table 5.3 Compared with CFG, the number of nodes and edges in ETG reduced

about 75%. Control statements reduced about 60% in 3 versions of Linux 61

Table 5.4 6 examples of graph size comparison between CFG and ETG from Linux

2.6.31 . 62

www.manaraa.com

vii

LIST OF FIGURES

Figure 3.1 Atlas queries for calculating MPG(X) 15

Figure 3.2 Each step of query results for the example shown in Figure 4.1(c) . . . 15

Figure 3.3 dsinter() and its reduced control flow graph 18

Figure 3.4 Reverse call graph related to signature dreq. Shadowed nodes belong

to MPG(X) . 25

Figure 3.5 Reverse call graph of signature super block with MPG(X) highlighted 27

Figure 4.1 Examples of RCG(X)- shadowed nodes belong to MPG(X) 31

Figure 4.2 MPG pattern fail on this case . 32

Figure 4.3 Atlas queries for calculating MPG(X) 33

Figure 5.1 3 non-nested control statements results 8 execution paths 39

Figure 5.2 Example of execution sequences and Event Traces 40

Figure 5.3 Different calling relations of inter-procedure matching 42

Figure 5.4 Code Example - Multiple locking events associate with different objects 43

Figure 5.5 mutex lock() and mutex unlock() are locking and unlocking operation

in mutex synchronization problem with one signature 45

Figure 5.6 Graph representations of function shown in Figure 5.5) 45

Figure 5.7 Graph refine illustration from CFG to EFG to ETG 46

Figure 5.8 CCFG of function acpi device register 49

Figure 5.9 ETG of function acpi device register, compared with CCFG shown

in Figure 5.8, the size is greatly reduced 50

Figure 5.10 Non-structure Example . 50

Figure 5.11 Non-structure Example Reduced . 50

www.manaraa.com

viii

Figure 5.12 Loop example - matching property always satisfied for any numbers of

loop iterations . 50

Figure 5.13 Loop example with non-important statements (xn) removed 51

Figure 5.14 Loop example - matching property fail with 2 or more iterations 51

Figure 5.15 Loop Example . 51

Figure 5.16 MPG greatly reduce the amount of functions involved in detailed analysis 53

Figure 5.17 Process Flow of Event-based verification 54

Figure 5.18 Type signature for mutex lock and mutex unlock 56

Figure 5.19 Inter-procedure property matching . 58

Figure 5.20 ETG of function snd timer open() . 63

Figure 5.21 MPG of signature nfnl mutex . 63

Figure 5.22 ETG of function nfnl lock() and nfnl unlock() 64

Figure 5.23 nfnetlink rcv() and nfnetlink rcv msg() 65

Figure 5.24 MPG of signature register mutex . 66

Figure 5.25 snd seq open() and seq free client1() 67

Figure B.1 Main index . 80

Figure B.2 List of all signatures for an version of Linux, global signature and type

signature are listed separately . 81

Figure B.3 Main page for a signature, MPG for the signature as well as the CFG

and ETG for each function in MPG are listed in a table. Link to the

source code are also listed . 82

Figure B.4 Control flow graph example after click the CFG link for any function . 83

www.manaraa.com

ix

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to those who helped me with

various aspects of conducting research and the writing of this thesis.

First and foremost, Dr. Suraj C. Kothari for his guidance, patience and support throughout

this research and the writing of this thesis. His insights and words of encouragement have often

inspired me and renewed my hopes for completing my graduate education. I would also like

to thank my committee members for their efforts and contributions to this work: Dr. Srinivas

Aluru, Dr. Tien Nguyen, Dr. Manimaran Govindarasu and Dr. Samik Basu. They asked

enlightening questions and provide fruitful thought during my prelim exam. I would like to

thank Jason Stanek, who assist me improving my understanding of STL. He also helped to

implement algorithm for breaking cycles of cyclic graph. I would like to thank Jon Mathews

from EnSoft Corp. who helped to use Atlas efficiently. He also helped to add functionality in

Atlas used for this research. Also I would like to thank Ahmed Y Tamrawi who helped me

implementing the program of getting event trace graph.

Additionally, I would like to thank all my friends in Ames who give me help and support

not only in my research but also in my personal life during my Ph.D. study.

www.manaraa.com

x

ABSTRACT

The use of software is pervasive in areas as diverse as aerospace, automotive, chemical pro-

cesses, civil infrastructure, energy, health-care, manufacturing, transportation, entertainment,

and consumer appliances. Our safety, security, and economy are now closely linked to the

reliability of software.

This research is about a technique to prove event-based safety properties of program. A

safety property is defined in terms of event traces. An event trace is associated with an execution

path and it is the sequence of events that execute on the path. Each event is identified with a

program statement or a block of statements. Particularly, this research has been focused on one

type of problem that follows one type of safety property we call matching pair (MP) property.

Memory leaks, asymmetric synchronization, and several other defects are examples of violation

of the matching pair property. The property involves matching between two types of events

on every execution path. We present a practical method to validate the MP property for large

software. The method is designed to address the challenges resulting from the cross-cutting

semantics and presence of invisible control flow. The method has two phases: the macro phrase

and the micro phrase. The macro analysis phase incorporates important notions of signature

and matching pair graph (MPG). Signatures enable a decomposition of the problem into small

independent instances for validation, each identified by a unique signature. The MPG(X)

defines for each signature X, a minimal set of functions to be analyzed for validating the

instance. The micro analysis phase produces the event traces graph representing all the relevant

execution paths through the functions belonging to a MPG(X). A fast and accurate analysis

of large software is possible because the macro analysis can exactly identify the functions that

need to be analyzed and the micro analysis further greatly reduces the amount of analysis

required to cover all execution paths by creating event trace graph (ETG) from the control

flow graph (CFG). We applied macro level analysis on eight versions of Linux kernels spanning

www.manaraa.com

xi

for three years. We further calculated ETGs for all functions identified by macro analysis for

three versions of Linux. With the combination of macro and micro analysis, we were able to

prove the correctness of more than 90% of the synchronization instances in the Linux kernel.

For each remaining case, we produced relevant ETGs for the further investigation by human

experts.

www.manaraa.com

1

CHAPTER 1. OVERVIEW

The use of software is pervasive in areas as diverse as aerospace, automotive, chemical pro-

cesses, civil infrastructure, energy, healthcare, manufacturing, transportation, entertainment,

and consumer appliances. Our safety, security, and economy are now closely linked to the

reliability of software. Software is vulnerable to unintentional programming errors and also

intentional malicious attacks. In the event of a crash, a personal computer can be rebooted,

but in a safety-critical system like an automobile or an airplane, a crash can mean loss of

human lives and waste of millions of dollars. And it happened; in 1996, the Ariane 5, a $500

million rocket launched by the European Space Agency, exploded 40 seconds after lift-off due

to a software error in the guidance system. There is a pressing need for a new technology to

ensure reliability of software.

In his invited talk at the 2009 International Symposium on Software Reliability Engineering

(ISSRE), Juichi Takahashi, a Distinguished SONY Engineer, pointed out the challenge of an-

alyzing even software as ubiquitous as the Linux kernel (about one million lines of C code) for

a common software problem: mismatches between locking and unlocking. Unmatched locking

can lead to deadlocks in the system and can cause the system to hang and have to be rebooted.

Takahashi presented a graph to show how the number of test cases grows exponentially (from

6 to 11340) as the number of concurrent threads increases from 2 to 6. Our analysis shows that

a configuration of a recent Linux kernel has 1446 threads that use locking. A complete testing

of software is not possible.

Static analysis has gained importance as another approach to detect software defects. Unlike

testing, the static analysis covers all paths, however, it aggregates the execution results along

different paths and that typically leads to many false positives. Another serious issue with static

analysis is that it cannot tackle invisible control. We will use the term invisible control to refer to

www.manaraa.com

2

changes in control flow that are not visible through static control flow analysis based on control

structures or function calls. The invisible control can happen due to interrupt processing,

thread scheduling, and exception handling. The runtime binding can also be thought of as

another form of invisible control.

This paper is about a technique to prove event-based safety properties of program. A safety

property is defined in terms of event traces. An event trace is associated with an execution path

and it is the sequence of events that execute on the path. Each event is identified with a program

statement or a block of statements. For example, a locking event is a statement that executes

the mutex lock(p) call, similarly an unlocking event that executes the mutex unlock(q) call.

The p, and q denote the objects to be locked or unlocked. A safety property is stated as a

condition that every event trace must satisfy. For example, an event E1 to lock an object is safe

if it is succeeded by an event E2 to unlock the same object on all execution paths containing

the event E1. A proof of this safety property involves proving if each locking event is safe or

not. For a safe locking event, the proof provides all the corresponding unlocking events. For

an unsafe locking event, the proof provides an execution path on which the locking event is not

followed by a corresponding unlocking event. We have done a case study in which the proof

technique was applied to three versions of the Linux kernel. The detailed results of our case

study are posted on the Web. A summary of results and a few representative examples are

included in the paper.

Clearly, a key challenge for designing such a proof technique is the exponentially large

number of execution paths. A sequence on n successive if-then-else statements results in 2n

execution paths. Moreover, a function call causes a path to splits into many paths. Our major

contribution is a set of abstractions that make it possible to examine all the event traces in

spite of the large number of execution paths. The abstraction has two parts: a macro-model to

tackle the explosion of execution paths through function calls and a micro-model to tackle the

explosion of execution paths within each individual function. The micro-model has a broader

applicability, it can be used for any event driven analysis of programs. The macro-model is

defined for a property that we call the matching-pair property. This property essential requires

matching events must happen. It is illustrated here for the locking and unlocking events but it is

www.manaraa.com

3

also applicable in many other contexts, for example, memory allocation and deallocation must

match or interrupt-enable must match with interrupt-disable. The macro-model is designed so

that it is also possible to tackle the invisible control flow.

1.1 Dissertation Outline

The detailed outline of this dissertation is as follows:

Chapter 1 introduced the importance of the matching pair problem and event based program

analysis. This chapter also describes the objectives of this dissertation.

Chapter 2 reviews the related literature for program analysis. They advantages and limi-

tations provides us guideline to develop our event base approach.

Chapter 3 explained the matching pair problem and the limitations of current research. A

2-phase method has been introduce the overcome some of the limitations, especially for inter-

procedure matching. To identify the functions related to the matching pair problem is critical

to solve the problem. Reverse call graph is an approach to the solution. While it still suffer

from the large number of functions involved. Matching pair graph is introduced as an refined

call relation graph for the problem. Matching pair graph refines the call graph by applying

a sequences of queries. The ending result is the minimum number of functions that must be

analyzed for proving the matching pair property. At function level (micro level), path analysis

method is introduced.

Chapter 4 presents an empirical study of matching pair property for mutex locking/unlock-

ing in 8 versions of Linux kernels. The complex of the matching pair problem and the amount

of reduction by applying the MPG are presented.

Chapter 5 presents a technique to prove event-based safety properties of program. The

proving is separated into 2 parts where micro model and macro model. The abstraction has

two parts: a macro-model to tackle the explosion of execution paths through function calls

and a micro-model to tackle the explosion of execution paths within each individual function.

The micro-model has a broader applicability, it can be used for any event driven analysis of

programs. The macro-model is defined for a property that we call the matching-pair property.

This property essential requires matching events must happen. It is illustrated here for the

www.manaraa.com

4

locking and unlocking events but it is also applicable in many other contexts, for example,

memory allocation and deallocation must match or interrupt-enable must match with interrupt-

disable. The macro-model is designed so that it is also possible to tackle the invisible control

flow.

Chapter 6 summaries the contribution of this dissertation.

www.manaraa.com

5

CHAPTER 2. RELATED WORKS

The increasing importance of software reliability has led to a large body of research aimed at

identifying violation of various program safety properties, including memory leak and mismatch

of safe synchronization lock [6, 36, 25, 28, 21, 22, 35]. We restrict the related work discussion

to the techniques that are most relevant to our work.

2.1 Finding Defects of Large Source Code

The challenge for large system is of course of the size of of the code base and time for

the analysis. The research and tools for large system especially operating systems have been

limited. Dynamic approaches generally not work because of its run time overhead, while static

analysis fail to scale to the large code base. [36] proposed a static tools for detect memory

access errors for large software including operating systems. Their tools generates reports for

potential defects, but provide no good way to validate the results.

2.2 Graph Based Program Analysis

It has been a long time since software is represented as a graph or a collection of graph

[17]. Graph representations like control flow graph (CFG), call graph and program dependency

graph (PDG) are among the most commonly used ones. There are many tools that can generate

call graph for inter-procedure analysis [31, 26]. Of all of the above tools, none but Atlas from

EnSoft [15] has the capability to generate a subgraph of a call graph containing minimum

necessary functions for analyzing the security property.

www.manaraa.com

6

2.3 Events Based Program Analysis

Joshi et.al [25, 28] proposed a dynamic technique for finding deadlocks of concurrent Java

program. They first observe certain important operations during and execution and construct

a skeleton of the execution. Next they run off the shelf model checking tools on the program

skeleton and report potential deadlock. Similar to our approach, they can also generate event

trace to the potential defects for manual investigation. But their approach is limited in two

ways. First, their approach does not guarantee the coverage of all execution paths. Second,

they have to annotate the code which is time consuming and limits its application to large

codes.

2.4 Function Summary

To proof safety properties of infinite-state system like software, it is critical to apply function

abstraction. Techniques for abstracting software are a prerequisite to make proving techniques

like software model checking applicable. The history of function summary dates back to early

1990s [20]. There have been many researches on automatic construction of function summary

for model checking [1, 23, 4, 3, 18].

2.5 Other Related Works

There is a more general approach to problems of safety checking by describing the safety

property as a finite state machine. Some of them use flow-sensitive data-flow analysis to track

the state at each program point and detect violations in the state machine, such as Metal [13]

and ESP [9]. Some others use model checking [2, 37, 10, 5]. These approaches allow users to

specify arbitrary state machines to check the violation of the safety property. The complexity

of state machine prevent them from scaling to larger systems.

www.manaraa.com

7

CHAPTER 3. A 2-PHASE METHOD FOR VALIDATION OF

MATCHING PAIR PROPERTY WITH CASE STUDIES OF

OPERATING SYSTEMS

The reliability of software continues to be more important than ever before. If the IBM 360

malfunctions, the only result is an incorrect calculation. If an avionics system malfunctions,

hundreds of people could die. And it happened. A software module for Ariane 4 was incorrectly

modified for Ariane 5, which led to its explosion forty seconds after the launch [11]. Even

recently, a software glitch in Toyota’s control system software has resulted in a massive recall

of vehicles. Software validation and verification is a critically important area where we need

significant new advances. The challenge lies in inventing cost-effective methods for validation

and verification of large software. This paper is about an engineering approach that combines

mathematical rigor with pragmatic simplifications to solve a difficult validation problem with

many practical benefits. It is an approach to provide a good combination of the mechanical

processing power of tools and the intelligent decision making power of humans.

We present an analysis framework for semi-automated validation of software with respect

to the matching pair (MP) property. The framework is useful for validating software against

memory leaks, asymmetric synchronization, and several other defects. These critical defects

can all be viewed as violations of the MP property. The framework is designed to analyze large

and complex software. We demonstrate the analysis framework by presenting two case studies

of validation: (a) the memory leak problem for the Xinu kernel with 5,000 lines of code, and

(b) the asymmetric synchronization problem for the Linux kernel with one million lines of code.

The paper [7] states the MP property for analyzing memory leaks and introduces the notion

of guarded flow analysis. We use the following general formulation of the MP property: on any

execution path, the identifier used by a call to P must flow into and be used by exactly one

www.manaraa.com

8

call to V , where P and V are problem-specific events in the software. This formulation can be

applied to analyze different types of problems. For example, P and V can be function calls to

allocate and deallocate memory, and the identifier is the pointer to the allocated memory. A

memory leak happens when a memory allocation call is not followed by a memory deallocation

call on at least one execution path. As another example, P can be the function call to lock

mutex, V the function call to unlock mutex, and the identifier a variable of type mutex. An

asymmetric synchronization is defined as an unmatched execution where a call to lock mutex is

not followed by a call to unlock mutex. We will refer to the P and V calls as matching events.

The unique identifier X associated with P (or V) will be called the signature. P (X) and V (X)

will denote calls with signature X.

The rest of the paper is organized as follows. Section 2 provides an overview of the 2-phase

method. Section 3 describes the macro analysis phase. Section 4 describes the micro analysis

phase. Section 5 discusses the validation process. Case studies with the Xinu and the Linux

kernels are presented in section 6. Section 7 gives the conclusion.

3.1 An Overview of the 2-Phase Method

A simple instance of the MP problem is one where P (X) and V (X) are invoked within the

same function f . It is a simple instance because it involves just one function f that needs to

be analyzed to validate the MP property. A complex instance of the MP problem is one that

involves cross-cutting semantics. Instead of being invoked within the same function, P (X) and

V (X) are invoked by different functions g and h respectively. In a complex instance, one must

identify these two functions g and h and analyze at least those two functions. These functions

must be analyzed together because they are connected by the use of a common signature X.

The passage of the signature from g to h must be traced during the analysis. This passage may

involve several functions all of which have to be analyzed to validate the particular instance of

the MP problem. This cross-cutting semantics can get even more complicated. Instead of just

two functions f and g, there can be multiple functions that invoke P and V using the same

signature X. Moreover, the passage from f to g may not be visible through the control flow

in instances where f and g are invoked by different threads. The control flow will also not be

www.manaraa.com

9

visible if f or g is invoked by an interrupt driven routine. These cases of invisible control flow

are especially difficult to validate.

In general, cross-cutting semantics makes it hard to ensure the MP property and thus

increases the probability of defects [12]. The algorithmic complexity of a context-sensitive

static analysis solution grows exponentially [27, 33]. Many tools [26, 8, 14, 16, 34] can perform

fast intra-procedural static analysis. However, they face challenges in performing the inter-

procedural analysis for analyzing cross-cutting semantics. We have identified three types of

challenges that static analysis tools face in analyzing complex instances of the MP problems.

We have designed the proposed 2-phase method to address these important challenges. Next,

we will identify these three types of challenges.

The first challenge, resulting from cross-cutting semantics, is to identify a minimal set of

functions to analyze for a given instance of the problem. First, we can form groups of functions

using signatures. We can form a group G(X) of functions that invoke P or V using the same

signature X. But these are not the only functions to be analyzed. Suppose a function g invokes

P (X) and h invokes V (X). It is important to identify and analyze also the functions that pass

the signature X from g to h. Clearly, the reverse call graph (RCG) of G(X) would suffice but

it is an overkill in many cases. So, the first challenge is to define a good candidate for the

minimal set of functions to be analyzed for a given signature X. We propose the notion of the

matching pair graph MPG(X) as a good candidate for defining such a minimal set of functions.

The second challenge comes from the multiplicative growth of execution paths. The number

of execution paths is typically small within a well designed function. However, in a complex

instance, we may have a large number of functions to analyze for a signature X and the

number of inter-procedural execution paths may become very large. In conservative static

analysis techniques, this explosion of execution paths is managed by aggregating the results of

analysis along different branches of a control structure. However, the accuracy is partly lost

and the resulting analysis leads to false negatives. For example, we can get false negatives in

cases where V (X) is invoked on some but not all branches of a control structure So, the second

challenge is to find an execution path analysis method that is efficient and also accurate. To

deal with this problem, we propose path analysis (PA) tables with event-based aggregation of

www.manaraa.com

10

paths as a part of our 2-phase method. We do not aggregate execution paths where the events

are different. At the same time, we propose several optimization to minimize the explosion of

execution paths to be analyzed.

The third challenge comes from the invisible control. Ordinarily, the control flow is visible

through control structures and call sequences. As discussed earlier, complex instances of the

MP problem may involve invisible control flow. In cases involving invisible control, static

analysis tools report false positives because their analysis cannot see the connection between

these invocations of P (X) and V (X) by different threads. Thus, the third challenge is to design

a validation method that works correctly in presence of invisible control. The proposed notion

of MPG(X) captures all the necessary functions that need to be analyzed for a signature X

even in cases of invisible control flow. For example, the MPG(X) will include functions g and

h that invoke P (X) or V (X) even if g and h belong to different threads.

3.1.1 Two Phases

Macro Analysis: The purpose is to identify all independent instances of the matching

pair problem, and determine the minimal set of functions to be examined for each instance.

The macro analysis phase has two steps:

1. Compute Signatures: Determine all the independent instances of the matching pair

problem by computing signatures. There is one signature for each instance. In section 3,

we define the notion of signature and illustrate it with a code example.

2. Compute Matching Pair Graphs: For each signature X, compute the matching pair

graph, MPG(X). The MPG(X) is defined and illustrated in section 3.

Micro Analysis: The micro analysis is done using the proposed Path Analysis (PA)

method that produces tables called PA tables to summarize functions. A set of PA tables are

constructed, one for each function belonging to MPG(X). Each instance is validated using this

set of PA tables. The micro analysis phase is discussed in detail in section 4.

This 2-phase method decomposes the validation problem into multiple instances. Each

instance is identified by a unique signature X. The method minimizes the number of functions

www.manaraa.com

11

to be examined for each instance by computing the MPG(X) for that instance. We will illustrate

how the micro analysis also becomes more efficient because of the MPG(X).

We have automated the macro analysis by writing a program using the queries supported

by the Atlas tool from EnSoft1. The initial compilation and indexing in Atlas takes about

half an hour for the Linux kernel. After the initial compilation, the macro analysis including

the computation of all signatures and the MPG(X) for each signature gets done in less than

a minute on a PC. The path analysis method for the micro analysis is partly automated. The

control paths are determined using the Understand C/C++ tool and then PA tables are written

manually.

Later, we will present case studies to show how the 2-phase method provides a fairly accurate

approach to validate the MP property. We will show examples to illustrate how some of the

false positives and false negatives, typically reported by static analysis, are avoided in the

2-phase method.

In addition to being efficient and accurate, the 2-phase method has other benefits. First,

it can be easily speeded up by employing a team of people. This is possible because the micro

analysis is done on separate instances of validation. Second, the 2-phase method produces

PA tables as structured artifacts. Besides validation, these PA tables can serve as valuable

documentation for program comprehension. Third, the method allows incremental validation.

For a new version of the software, we need to validate only the new or the modified instances of

the matching pair problem. New instances can be identified by identifying the new signatures

and the modifications can be detected by comparing the MPG(X) for the old and the new

version.

3.2 Macro Analysis Framework

As discussed in the earlier overview, the macro analysis phase introduces signatures to

separate instances on the MP problem and it introduces MPG(X) as a minimal set of functions

to be analyzed to validate the instance identified by a signature X. This section provides details

of signatures, the MPG(X) and how it is computed.

1http://www.ensoftcorp.com

http://www.ensoftcorp.com

www.manaraa.com

12

3.2.1 Signatures for Matching Pair Instances

Let D (stands for direct callers) be the set of functions that invoke either P or V , or both.

The first task is to divide the set D into separate groups of functions corresponding to different

instances of validation. A subset of functions in D are grouped together because the calls

to P and V they make are related. Consider the matching pair problem for memory leaks

where the P is an allocation of memory and the V is a deallocation of memory. In this case, a

group includes functions that invokes P to allocate memory M and functions that invoke V to

deallocate the same memory M . For example, on one execution path f1 allocates M to create

an object X, on a separate but related execution path f2 allocates M to create the same object

X, and subsequently a function g, on a common branch belonging to the two execution paths,

deallocates M . These functions f1, f2, and g are grouped together.

We propose the notion of signature to form groups of functions in D. We define a signature

to be a global variable or a user-defined type associated with the P or V calls.

First, we will explain the case of a global variable as a signature. In this case, P and V

use a global variable X as a parameter. The Linux kernel has several mutex lock(X) and

mutex unlock(X) calls where X is a global variable. For the asymmetric synchronization

problem, the mutex lock(X) and mutex unlock(X) are the P and V functions respectively.

Next, we will explain the case of a user-defined structure as a signature. To understand this

case, consider the following example of a cross-cutting matching in Xinu kernel. In this example

the getbuf() (memory allocation) must match with freebuf() (memory deallocation). The

function dswrite() calls getbuf(), the pointer p to the allocated memory is passed as a

parameter to the function dskenq() which in turn passes it as a parameter to the function

dskqopt(). Both dskenq() and dskqopt() assign a pointer to a global structure dsblk.

dsinter(), an interrupt-driven function, gets the pointer to the allocated memory from dsblk

and deallocates the memory by invoking freebuf(). We will discuss the validation for this

example later.

In the above example, the memory is allocated for a user-defined structure type dreq. The

pointer that gets passed to different functions is always a pointer to the type dreq. dsinter()

www.manaraa.com

13

also uses a pointer to the type dreq when it deallocates memory by calling freebuf(). In this

example, it makes sense to use the user defined type dreq as the signature and group together

the functions that call getbuf() or freebuf() using a pointer to dreq.

In a properly designed software, either a global variable or a pointer to a user-defined

type is used with the P and V calls. This practice enhances the readability of the program.

Without this practice, it is very difficult for a programmer to keep track of cross-cutting cases

of matching and ensure the matching is correct. In our method, the cases where this practice is

not followed are reported as violations of a good design practice. We will report the violations

of this practice in the Linux kernel we have examined.

3.2.2 Matching Pair Graph

We will define the matching pair graph for signature X and denote it by MPG(X). It is

intended to serve as the smallest graph that includes all call sequences of functions that need

to be examined for checking the instance of the matching pair problem with signature X. We

will give an algorithm to compute the MPG(X).

Let P (X) and V (X) denote the matching pair calls with signature X. Let RCG(X) be the

reverse call graph with P (X) and V (X) as leaves. Clearly, MPG(X) must be a subgraph of

RCG(X). Let us first discuss some examples to motivate the formal definition of MPG(X).

Figure 4.1 shows 3 examples of RCG(X). In figure 4.1(a), function A2 calls function A1

which calls both P (X) and V (X). The matching sequence of calls are contained in A1 and

there is no need to include A2 in MPG(X).

But the function B3 in figure 4.1(b) is a different story. It indirectly calls P (X) and V (X)

via B1 and B2 respectively. In this case, it is essential to include all the nodes in MPG(X) to

check the matching pair property.

Figure 4.1(c) is a more complicated case. Since C1, C2, and C3 invokes P (X) and V (X),

they must be included in MPG(X). The node C4 has a path via C1 to invoke P (X) and its

matching with V (X) can only be checked by including C4. Another possibility is that C4 is

called by C7 and the matching happens via C7 and C3. Since C7 has a path via C3 to invoke

V (X) and its matching with P (X) can only be checked by including C7. Thus C7 must be

www.manaraa.com

14

included independent of its relationship to C4. The nodes C5 and C6, in a similar situation as

the node A2 in figure 4.1(a), do not need to be included in MPG(X).

3.2.3 Formal Definition of MPG(X)

Let RCG(X) be the reverse call graph with P (X) and V (X) as leaves. MPG(X) is an

induced subgraph of RCG(X) defined as follows. Let n and m be nodes in the graph RCG(X).

n is adjacent to m iff n = m or ∃ a sequence S of function calls in RCG(X), where S starts

at n and ends at m. Let A(x, y) be the predicate “x is adjacent to y”. A node n is balanced

if A(n, P (X)) ∧ A(n, V (X)) is true, unbalanced if A(n, P (X)) ∧ A(n, V (X)) is false. Next, we

define the unbalanced child (UBC) property. A node n has the property UBC iff n has an

unbalanced child c. Now, we will define MPG(X) using the UBC property. MPG(X) is the

largest induced subgraph of RCG(X) with the constraint that all of its roots have the property

UBC.

Note that a node with the UBC property is not necessarily a root of MPG(X). For example,

in Figure 4.1(c), C4 has the property UBC but it is not a root.

3.2.4 Computing MPG(X)

We have implemented an algorithm for computing MPG(X) as a sequence of Atlas queries.

A powerful feature of Atlas is that the queries are composable. This makes it possible to write

a compact program for computing MPG(X). This query-based program is shown Figure 4.3.

The queries used in the program work as follows. Let N be set of all functions. The query

Call(F) returns set G = {g ∈ N | g calls f , where f ∈ F}. The query CG(F) returns the set

G = {g ∈ N | f is adjacent to g, where g ∈ F}. The query RCG(F) returns the set G = {g ∈ N |

g is adjacent to f , where f ∈ F}. In addition to queries, we use the set operations supported

by the Atlas query language.

The query-based algorithm finds all the nodes with the UBC property. Then, UBC nodes

are used to generate the MPG(X). To illustrate the algorithm, we simulate it on the graph

shown in Figure 4.1(c). The simulation results of each step are shown in Figure 3.2.

www.manaraa.com

15

RCG-P = RCG(P(X))

RCG-V = RCG(V(X))

RCG-B = RCG-P
⋂

RCG-V

RCG-C = RCG-P
⋃

RCG-V

RCG-P-ONLY = RCG-P - RCG-B

RCG-V-ONLY = RCG-V - RCG-B

C-P-ONLY = Call(RCG-P-ONLY)

C-V-ONLY = Call(RCG-V-ONLY)

MPG-BAL = (C-P-ONLY
⋃

C-V-ONLY)
⋂

RCG-B

UBC = MPG-BAL
⋃

RCG-P-ONLY
⋃

RCG-V-ONLY

MPG = CG(UBC)
⋂

RCG-C

Figure 3.1 Atlas queries for calculating MPG(X)

RCG-P = {P(X),C1,C2,C4,C5,C6,C7}

RCG-V = {V(X),C2,C3,C4,C5,C6,C7}

RCG-B = {C2,C4,C5,C6,C7}

RCG-C = {P(X),V(X),C1,C2,C3,C4,C5,C6,C7}

RCG-P-ONLY = {P(X),C1}

RCG-V-ONLY = {V(X),C3}

C-P-ONLY = {C1,C2,C4}

C-V-ONLY = {C2,C3,C7}

MPG-BAL = {C2,C4,C7}

UBC = {P(X),V(X),C1,C2,C3,C4,C7}

MPG = {P(X),V(X),C1,C2,C3,C4,C7}

Figure 3.2 Each step of query results for the example shown in Figure 4.1(c)

www.manaraa.com

16

3.3 Micro Analysis Framework

The macro analysis determines MPG(X) which is the set of functions to be analyzed for

validating the MP property for signature X. The purpose of the micro analysis is to perform

the detailed analysis necessary for validating the MP property. During the micro analysis,

execution paths are analyzed for each function that belongs to the MPG(X). We use the

concept of events [29] to minimize the number of execution paths that need to be examined.

We call this the Path Analysis (PA) method. The results of the PA method are noted in a

tabular form using a notation similar to the tabular notation introduced by Parnas et. al. for

the Trace Function Method (TFM) [30]. We refer to these results as PA tables. Finally, we

will discuss how the validation can be done using PA tables.

3.3.1 Event-Based Path Optimization

Developers use top-down, bottom-up or mixed approach to create a mental picture of the

code. When using a bottom-up approach, developers start off by looking for interesting events

manifested in the code and gradually abstract out the details. The events of interest vary

depending on the developer’s concern. For example, when a developer is trying to isolate

memory leaks in the code, the events of interest would be memory allocations and deallocations,

aliasing of pointers, and pointer escapes through function calls. The tool CVision [29] was

designed to enable users to isolate and navigate through the code based on such events. The

CVision is based on the notion of event view defined as the minimal subgraph of a call graph or

reverse call graph that is relevant to a specified set of events. The MPG(X) can be thought of

as an event view for analyzing the matching pair problem. Here, we will discuss an event-based

optimization designed as a part of the PA method.

A set of events is defined for a given type of the MP problem. Each event is associated

with code statements which execute the particular event. We will refer to these as marked

code statements. For validating the matching pair property, we consider the following types

of events: invocations of functions belonging to the MPG(X), the return statements to exit a

function, the escape events, and the capture events. The escape events are the events through

www.manaraa.com

17

which the signature escapes out of a function. The escape events are: (a) the signature is

returned by a function g, (b) the signature is passed as a parameter to a function f , (c) the

signature is assigned to an external entity, typically a global variable. The capture events are:

(a) the signature returned by a function g is captured in a function f , (b) the signature that

came in as a read by a function f , (c) the signature is read from an external entity, typically a

global variable.

Figure 3.3 shows an example of a function with relevant events marked. This function is

part of the validation example we will discuss later. Here, we will use this example to illustrate

the event-based optimization technique to reduce the number of relevant execution paths that

need to considered for the purpose of validation. First, we will discuss the relevant events and

markings. The signature is dreq and so the deallocation call freebuf(drptr) is marked. The

call freebuf(drptr->drbuff)is not marked because the signature is not dreq. The return

statements are marked to note that the execution paths end.

The event-based path optimization works as follows. The optimization principle is: treat a

set of paths as one equivalent path if the sequence of events is the same on those paths. This

makes sense because the validation logic would be the same for those paths. The optimization

principle implies that the set of paths due to control structures with no marked events on any

of its branches can be treated as one equivalent execution path. This reduction is illustrated

in Figure 3.3. As shown in the figure, dsinter() has seventeen execution paths which reduce

to three by using event base optimization. Moreover, the two paths with only the return are

further combined into one path also by the event optimization. Thus the original seventeen

execution path are reduced to two.

Note that the MPG(X) does help in making the event-based path optimization more effec-

tive. Referring back to Figure 3.3, the dsinter() code has a call to the function dskstrt().

This call is not marked because dskstrt() does not belong to MPG(dreq) which makes that

call a non-relevant event. If that call were to be treated a relevant event, the path reduction

would not be as effective, it would have resulted in four paths instead of two.

www.manaraa.com

18

Signature

Event
C1:

C2:
C3:

C4:

C5:

C1

return

return freebuf(dreq)

C2 & C3 C4 & C5

Reduced

Control Flow

Graph

C1

return

return freebuf(dreq)

C2 & C3 C4 & C5

Control Flow Graph

Figure 3.3 dsinter() and its reduced control flow graph

3.3.2 Path Analysis Method

For a given function, the Path Analysis (PA) Method, as suggested by its name, analyzes

and represents the execution paths of a function. Using the event-based optimization discussed

earlier, the PA method minimizes the number of execution paths that need to be analyzed.

The PA method results in a summarization of the function. The summarization is presented

using the PA table, a tabular notation we have designed.

The PA table is defined for each function g belonging to the MPG(X). It has the following

structure. The columns of the PA table are broken into three sections: Input, Condition,

and Event Trace. The header row of the PA table marks these three sections. The Input

section lists the external entities available to the function g. These entities are either global

variables or parameters passed to g by its caller. The Condition section will have as many

columns as the conditional branch statements in the function after applying the event-based

path optimization. The header row shows the condition labeled as Ci(f) for a function f . The

Event Trace section describes the sequence of events on an execution path of the function.

www.manaraa.com

19

Note that an execution path shown in the PA table is an equivalent execution path obtained

by applying the event-based path optimization to actual execution paths.

Each row in a PA table corresponds to one equivalent execution path. As we go across

a row, the entry in each Condition column is T(TRUE), F(FALSE), or − (a non-affecting

condition) on a particular execution path. The − entry may be there because the path does

not hit this condition because of an exit by a previous return. Another reason for having the

− entry is to represent the fall through logic of the CASE Statement in the C language. The

PA tables for dsinter() is shown in Table 3.5.

3.4 Validation Using the 2-Phase Method

The 2-Phase method decomposes the matching pair problem into separate instances which

can be validated independently. For each instance, we produce the signature X, the MPG(X)

and the PA tables for functions belonging to the MPG(X). The validation is done using these

PA tables. We will describe the overall process of validation and then illustrate it with an

example from the Xinu kernel.

3.4.1 The Validation Process Using PA Tables

First, a few important observations about PA tables. Each row of a PA table represents

a set of equivalent execution paths through the function f . The sequence of events on each

execution path are listed in the last column. If the sequence includes a call to a function g,

then the execution path continues and it can have multiple branches through g. An execution

path ends in f itself if the sequence of events does not include a function call.

Suppose f calls g and g calls h, and the execution path ends in h. Then a complete

execution path is obtained by concatenating the paths, with one path selected from each of the

functions f , g, and h. The sequence of events on the complete execution path is obtained by

concatenating the sequences of events on the selected paths.

The validation process works as follows:

1. For each invocation of P (X), start with the PA table for the function f and the row for

www.manaraa.com

20

the execution path where the invocation event is shown.

2. Iterate over all complete execution paths obtained by following the call chains as described

above.

3. Check the sequence of events on the complete execution path to validate if P (X) is

followed by a unique V (X). If not, it is a violation of the MP property.

3.4.2 Important Optimizations for Validation

The number of complete execution paths can grow multiplicatively along a call chain. Sup-

pose g has three paths, h has four paths, and we have call chain where f calls g and g calls

h, then a single path in f can branch into twelve paths. This number can become very large

quickly with long call chains.

The multiplicative growth can be effectively restricted in practice by applying the following

optimizations:

1. MPG(X): The MPG(X) eliminates unnecessary call chains by minimizing the number

of functions to be examined. Also, as illustrated earlier, the MPG(X) makes the next

optimization more effective.

2. Event-Based Path Optimization: It minimizes the number of paths within a function

by retaining only the paths where events relevant to the matching pair problem happen.

3. Condition-Based Path Optimization: It minimizes the number of complete paths by

eliminating certain path formation based on incompatibility of the governing conditions

for individual path segments selected from various functions.

The first two are the new optimizations reported in this paper. The third optimization has

been used in various contexts [38]. We will quickly explain the optimization in the context of

the PA method. The governing condition for an execution path in a function is easily obtained

from the PA table as a logical AND of the conditions along the row that corresponds to the

path. Continuing the above example, suppose G(f) be the governing condition for the path

www.manaraa.com

21

in f , and G1(g), G2(g), G3(g) be the governing conditions for three paths in g, and G1(h),

G2(h), G3(h), G4(h) be the governing conditions for four paths in h. It is possible to rule out

several paths by checking the compatibility of the governing conditions. For example, it may

be the case that if G(f) holds then G2(g), G3(g), G4(h) cannot be true, and if G1(g) holds then

G2(h), G3(h) cannot be true. Then, instead of twelve complete paths, there would be only one

complete path corresponding to the allowable combination G(f), G1(g), G1(h).

3.5 Case Study Results

We present two case studies of validation using the 2-phase method. The first study is for

validating the Xinu kernel with respect to the MP property applied to check the memory leak

problem. The second study is for validating the Linux kernel with respect to the MP property

applied to check the asymmetric synchronization problem.

3.5.1 Xinu Case Study

Xinu is a small multi-threaded operating system used as a teaching tool in academia and

as a small kernel for embedded systems in industry. Its relatively small size, about 5,000 lines

of code, makes it a good choice for illustrating concrete applications of the 2-phase method.

Management of buffer pools is a critical functionality in Xinu. The system buffers are allo-

cated by invoking the function getbuf() and deallocated by invoking the function freebuf().

To apply the 2-phase method, P is mapped to getbuf() and V is mapped to freebuf(). When

getbuf() is invoked, a global variable representing the buffer pool id is passed as an argument.

The getbuf() returns the pointer to the allocated memory which is cast as a pointer to some

user-defined type. In example

1 drptr = (struct dreq ∗) getbuf (dskrbp) ;

the pointer is cast to the type struct dreq. The global buffer pool id and the user-defined

type are used as signatures in this case study. These are the artifacts that help the developer

to track and distinguish different instances of buffer allocations.

www.manaraa.com

22

Table 3.1 Signatures in Xinu

Type getbuf() calls freebuf() calls MPG(X)

dreq 4 8 9

epacket 8 12 31

Table 3.2 PA table for dswrite()

Input Event Trace

devsw
getbuf(dreq)

dskenq(dreq, devsw.dvioblk)

The Xinu kernel we analyzed has 263 functions. Our macro analysis using the Atlas tool

resulted in two signatures dreq and epacket. The results including the MPG(X) sizes are

shown in Table 3.1.

3.5.2 An Example of Validation

We will present an example of validation for the signature dreq. The MPG(dreq) is shown

in Figure 3.4. In this example, we will check if the getbuf() call in dswrite() has a matching

freebuf() call on every execution path.

Function dswrite() does not call freebuf() so this is an example of the cross-cutting

matching. dswrite() does have an escape event where the pointer to the allocated memory is

passed as a parameter to dskenq(). The PA table for dswrite() is shown in Table 3.2.

The PA table for dswrite() shown in Table 3.2 has one row indicating that dswrite()

has only one execution path. This execution path must continue because its event trace shows

the invocation of dskenq(). Next, we examine the PA table for dskenq() shown in Table 3.3.

This PA table shows four execution paths out of which three terminate and one continues with

Table 3.3 PA table for dskenq()

Input
Condition

Event Trace
C1 C2 C3

dreq, devsw.dvioblk

T - - devsw.dvioblk.dreqlst ← dreq

F T - dskopt(devsw.dvioblk.dreqlst, dreq)

F F T devsw.dvioblk.dreqlst ← dreq

F F F devsw.dvioblk.dreqlst ← dreq

www.manaraa.com

23

a call to dskqopt(). Here, it looks like a memory leak because these three execution paths

that terminate at dskenq() have no freebuf() call. We will do a closer examination of this

potential leak later. For now, we follow the path into dskqopt().

Instead of referring to actual conditions in the code, we represent them symbolically in PA

tables. For example, in Table 3.3, we have used C1, C2, and C3. The actual conditions can

be rather long and complex. Also, each row corresponds to one equivalent path which can

correspond to several actual paths through code with different conditions and we will need to

represent them all. The actual conditions are not important in this analysis unless it is the

case where we apply condition based optimization that was discussed earlier.

Function dskqopt() is a little more complicated, it contains seven paths as shown in Table

3.4. Thus, we have potentially ten complete execution paths starting from dswrite(), of which

three terminate at dskenq(). Similar to the three paths that terminated at dskenq(), the PA

table for dskqopt() shows four paths which have no freebuf(). Again, this looks like a

memory leak.

The number of execution paths shown in a PA table can be further reduced by applying

the condition-based path optimization discussed in the previous section. Let us apply that op-

timization. dswrite() sets the flag drop==DWRITE, and makes the statement dsptr->dreqlst

== DRNULL false. This information is pass to dskenq() and dskqopt(). Based on these two

conditions, only two paths in the PA table remain feasible. One path contains the freebuf(),

and the other one contains an escape event but no freebuf().

So far we have five complete execution paths of which three terminate in dskenq() and two

terminate in dskqopt(). Before we proceed further we want to point out the opportunity for

a more powerful event-based path optimization. Of these five complete execution paths, four

have the same event trace containing one and the same escape event devsw.dvioblk.dreqlst

← dreq. Thus, we have to examine really only two execution scenarios corresponding to the

two execution paths. In one execution scenario we do have a matching and so it is not a

problem. The other execution scenario appears to be a memory leak and we will examine it

more closely.

This last scenario brings us to a point where automated analysis is not enough but provides

www.manaraa.com

24

Table 3.4 PA table for dskqopt()

Input
Condition

Event Trace
C1 C2 C3 C4 C5 C6

T - - - - -

F T - - - - freebuf(dreq)

dreq F F T - - - freebuf(dreq)

devsw.dvioblk.dreqlst F F F T - - freebuf(dreq)

F F F F T -

F F F F F T devsw.dvioblk.dreqlst ← dreq

F F F F F F

Table 3.5 PA table for dsinter()

Input
Condition

Event Trace
C1 C2 C3 C4 C5

T - - - - drptr ← dsptr->dreqlst;

dsptr F T - - - drptr ← dsptr->dreqlst;

dsptr ← devsw.dvioblk F F T - - drptr ← dsptr->dreqlst;

F F F T - drptr ← dsptr->dreqlst; freebuf(dreq)

F F F F T drptr ← dsptr->dreqlst; freebuf(dreq)

very valuable evidence for human experts to complete the validation task. One important

piece of evidence − all execution paths that have appearance of a memory leak do have an

escape event. Just as a side note, it is not very likely that the developer would forget memory

deallocation on several paths and instead place a mysterious escape event there. We will now

examine other important evidence from the 2-phase method that provides valuable insight to

complete the validation.

First, the MPG(dreq) shown in Figure 3.4 has the node dsinter() that calls only freebuf().

This freebuf() probably matches with some getbuf(), which one? Let us now check the PA

table for dsinter() shown in Table 3.5. One path in dsinter() is feasible under the condition

drop==DWRITE set by dswrite(). The event trace on this path, shows a capture event followed

by freebuf(dreq). The paths with suspected memory leaks have escape events and here it is

a matching capture event. In functions dskenq() and dskqopt() the signature dreq escapes

to the global data structure devsw.dvioblk.dreqlst and function dsinter() captures it from

the same data structure. This is strong evidence for a match.

www.manaraa.com

25

Figure 3.4 Reverse call graph related to signature dreq. Shadowed nodes belong to MPG(X)

Table 3.6 Reductions from the event-based path optimization (EPO) and condition-based

path optimization (CPO)

Function Execution Paths After EPO After CPO

dswrite 1 1 1

dsread 1 1 1

dsseek 1 1 1

dsksync 1 1 1

dskenq 4 4 1

dskqopt 7 7 1

dsinter 17 2 1

Function dswrite() is the most complicated case for the signature dreq. The other cases

are not discussed here in detail but the results of path optimizations are reported in Table 3.6.

3.5.3 Mutex Synchronization in Linux

The results of macro analysis for the Linux kernel version 2.6.31 are reported here. The

kernel has 1,081,090 lines of code and 39,973 functions, we found that the validation task can

be broken down into 249 instances of synchronization, with the average of eight functions to

be examined per instance. The distribution of the size of MPG(X) is presented in Table 3.7.

It can be seen that the size of MPG(X) is small in majority of the cases. The size is less than

www.manaraa.com

26

Table 3.7 Distribution of the size of MPG(X)

Range
Distribution

Average size≤ 5 6→ 10 11→ 50 > 50

Count 186 35 25 3 8.24

five in 186 out of 249 instances of the MP problems. The size is bigger than 50 in only three

instances.

The savings from MPG(X) are significant. The size of MPG(X) is typically much smaller

than that of the reverse call graph RCG(X). An illustration of MPG(X) for one signature

in Linux is shown in Figure 3.5. This figure shows the reverse call graph for the signature

X = super block. The RCG(X) has 52 functions of which 24 belong to the MPG(X). The

functions belonging to the MPG(X) are highlighted in Figure 3.5. Of the functions belonging

to the MPG(X), all but one - fsync super(), satisfy the UBC property and eleven of those

functions are the roots of the MPG(X).

We did a study with fifteen graduate students, where each student did the micro analysis

of the same five instances of synchronization, with the size of MPG(X) varying from five to

fifty functions. On average, students reported ten hours for validating all five instances. Since

the size of the MPG(X) is small in many instances as shown in Table 3.7, we estimate that

after a few hours of training with the 2-phase method, a good software engineer can complete

the validation of the entire Linux kernel in roughly 150 hours.

3.6 Conclusion

The paper presents a 2-phase method for validating the MP property for large software.

The important innovations are: the use of signatures to decompose the validation problem into

independent instances each associated with a unique signature X, the notion of MPG(X) as a

minimal set of functions to be analyzed for the instance with signature X, and the PA method

for analyzing the execution paths efficiently and accurately.

We present a case study of the XINU kernel to show how the 2-phase method provides

a fairly accurate approach to validate the MP property. We illustrate how some of the false

www.manaraa.com

27

Figure 3.5 Reverse call graph of signature super block with MPG(X) highlighted

www.manaraa.com

28

positives and false negatives, typically reported by static analysis, are avoided in the 2-phase

method. Specifically, we identify three challenges for static analysis and illustrate how those

challenges are addressed by the 2-phase method. This Xinu case study illustrates a difficult

case of validation that simply cannot be done using static analysis because it involves an

interrupt-driven routine and thus the control flow is not visible for performing static analysis.

We present another case study which is about the Linux kernel. The results of macro

analysis for the Linux kernel version 2.6.31 are reported in the paper. The kernel has 1,081,090

lines of code and 39,973 functions. We found that the validation task can be broken down into

249 instances of synchronization. The average size of MPG(X) is eight, i.e., eight functions to

be examined per instance. This knowledge of number of instances and the size of each instance

provides a basis for estimating the effort needed for validation.

We have proposed MPG(X) as a minimal set of functions to be analyzed for an instance

of the MP problem with signature X. The Linux case study includes an example to show how

the MPG(X) can be much smaller compared to the reverse call graph which one can use as

an alternative to MPG(X). We present the distribution of the size of MPG(X). The size of

MPG(X) is less than five in 186 out of 249 instances. The size is bigger than 50 in only three

instances.

This 2-phase method is amenable to automation. Currently, the macro analysis phase is

completely automated using the Atlas tool from EnSoft. This automation is done by writing

program based on Atlas queries. The paper presents an algorithm to compute MPG(X) as a

sequence of Atlas queries. The micro analysis phase, i.e., the PA method is currently semi-

automatic with scope for further automation.

The paper presents a semi-automated approach where the analysis can handle simple cases

automatically and for complex cases it provides valuable evidence for a human expert to com-

plete the validation. The paper presents an example where it would be difficult for a human

expert to reason without the evidence produced by the automated analysis based on the 2-phase

method.

www.manaraa.com

29

CHAPTER 4. PATTERN BASED EMPIRICAL STUDY TO ASSIST

WITH ANALYSIS OF MATCHING PAIR PROPERTY

There is a pressing need for new technologies to ensure reliability of software. A personal

computer can be rebooted, but in a safety-critical system like an automobile or an airplane,

a crash can mean loss of human lives and waste of millions of dollars. And it happens; in

1996, the Ariane 5, a $500 million rocket launched by the European Space Agency, exploded

40 seconds after lift-off due to a software error in the guidance system [11].

Juichi Takahashi, a Distinguished SONY Engineer, recently pointed out the challenge of

analyzing even software as ubiquitous as the Linux kernel (about one million lines of C code) for

a common software error: mismatches between locking and unlocking [32]. Takahashi presented

a graph to show how the number of test cases grows exponentially - from 6 to 11340 as the

number of concurrent threads increases from 2 to 6. Since the test cases grow exponentially,

complete testing is impossible for large programs. Static analysis has been proposed as another

approach [8, 14, 16, 34]. However, a complete and sound static analysis of large programs is

not feasible in practice.

We propose a pattern-based method for checking the MP property. Good programmers

regulate the use of P and V operations to make it easier for them to ensure the matching of

MP property. To the extent possible, they design programs so that the corresponding P and

V operations are performed within the same function. However, situations such as the 2-level

design of device drivers require that the P is performed by a function f belonging to the upper

level driver and the V is performed by another function g belonging to the lower level driver.

We present two patterns that can deal with the situations where the corresponding P and V

operations are performed by different functions. We present an empirical study of the Linux

kernel to discover these patterns. We use the mutex synchronization in Linux as the example

www.manaraa.com

30

where the P and V operations are mapped to functions mutex lock() and mutex unlock()

respectively.

4.1 Identifier Pattern

There are different instances of matching based on the mutex lock used by P and V op-

erations. An identifier X for the lock is passed as a parameter to P and V operations. The

identifier pattern is a simple method a programmer could use to keep track of the identifier.

Without it, tracking the identifier would require pointer alias analysis which can become very

complicated [24].

It is simple to keep track of the identifier if the programmer uses either a global variable

or a user defined type as the identifier. The global variable or the user-defined type become a

unique token to track the identifer and we call it the Identifier Pattern. We expect extensive

use of this pattern in any well designed software. As an example, in one version of the Linux

kernel we analyzed, 1181 out of 1220 instances of P or V operations use the Identifer Pattern.

4.2 Matching Pair Graph Pattern

Identifier Pattern disassembles the matching pair problem into several small pieces which

could be analyzed separately. But it doesn’t reduce the total number of functions to be checked

in the matching pair analysis. In a well designed software, the set of functions involved in the

matching for each identifier X will be much smaller than the set of functions in the reverse

call graph (RCG) of the identifer X, denoted by RCG(X). We propose another pattern which

we call Matching Pair Graph (MPG) Pattern. We propose the notion of MPG(X), typically

a much smaller subset of RCG(X) as the set of functions involved in the matching for each

identifier X.

4.2.1 Matching Pair Graph

We will define MPG(X) as the smallest graph that needs to be examined for checking the

matching pair property for signature X. The bigger the MPG(X), the more work it will be to

www.manaraa.com

31

V(X)P(X)

A1

A2

(a)

V(X)P(X)

B1

B3

B2

(b)

V(X)P(X)

C1

C4

C2 C3

C5

C7
C6

(c)

Figure 4.1 Examples of RCG(X)- shadowed nodes belong to MPG(X)

check the matching pair property. Thus, the desired pattern is that MPG(X) be small.

Let X be the lock associated with a synchronization concern. Let L(X) and U(X) be the

locking and unlocking operations on X. Let RCG(X) be the reverse call graph with L(X) and

U(X) as the leaves. We are interested in defining the matching pair graph MPG(X) of lock

X as the smallest graph that includes all call sequences of functions that need to be examined

for checking the matching pair property for the lock X. Clearly, MPG(X) must be an induced

subgraph of RCG(X).

Let us first discuss some examples that we can use to motivate MPG(X).

Figure 4.1 shows 3 examples of RCG(X). In figure 4.1(a), function A2 calls function A1

which calls both L(X) and U(X). The matching sequence of calls are contained in A1 and

there is no need to include A2 in MPG(X).

But B3 in figure 4.1(b) is a different story. Though B3 doesn’t call L(X) or U(X) directly, it

links the locking and unlocking sequences via B1 and B2 respectively. It is essential to include

all the nodes in MPG(X) to check matching pair property.

Figure 4.1(c) is a more complicated case. Since C1, C2, and C3 perform the locking/unlocking

operations they must be included in MPG(X). The node C4 has a path via C1 to invoke L(X)

and its matching with U(X) can only be checked by including C4. Another possibility is that

C4 is called by C7 and the matching happens via C7 and C3. Since C7 has a path via C3 to

invoke U(X) and its matching with L(X) can only be checked by including C7. Thus C7 must

be included independent of its relationship to C4. The nodes C5 and C6, similar situation as

the node A2 in figure 4.1(a), do not need to be included in MPG(X).

www.manaraa.com

32

4.2.2 Definition of MPG(X)

Let RCG(X) be the reverse call graph with P (X) and V (X) as the leaves. MPG(X) is an

induced subgraph of RCG(X) defined as follows. Let n and m be nodes in the graph RCG(X).

n is adjacent to m iff n = m or ∃ a sequence S of function calls in RCG(X), where S starts

at n and ends at m. Let A(x, y) be the predicate “x is adjacent to y”. A node n is balanced

if A(n, P (X)) ∧ A(n, V (X)) is true, unbalanced if A(n, P (X)) ∧ A(n, V (X)) is false. Next, we

define the unbalanced child (UBC) property. A node n has the property UBC iff n has an

unbalanced child c. Now, we will define MPG(X) using the UBC property. MPG(X) is the

largest induced subgraph of RCG(X) with the constraint that all of its roots have the property

UBC.

Be aware that MPG(X), instead of the formal validation technique, is a pattern we observed

from the real code for the MP problems. It does not always guarantee to give a precise boundary

for the matching pair problem if the behavior of the function related to P and V operations

depends on its input. One such pseudo example is presented in Figure 4.2. Design a function

in which the behavior depends on other functions isn’t good. But even for examples like this,

the MPG(X) stills provides the lower bound for the analysis. What’s more, from our analysis

of Xinu and Linux code, we haven’t be aware of any violation of this kind.

void g(bool b){if(b) lock(); else unlock()};

void f(){g(true);g(false)}

Figure 4.2 MPG pattern fail on this case

4.2.3 Computing MPG(X)

We implemented the algorithm for computing MPG(X) as a sequence of Atlas queries [15].

The Atlas tool supports a query language. A powerful feature of Atlas is that the queries are

composable which made it possible for us to write a compact program for computing MPG(X).

We have shown this query-based program in Figure 4.3. This algorithm is straightforward.

Starting from L(X) and U(X), for each function, the algorithm checks its adjacency to L(X)

www.manaraa.com

33

and U(X). Then the algorithm marks the functions that satisfy the UBC property. At the

end, MPG(X) is computed as the maximum induced subgraph of RCG(X) using node with

UBC property as the roots.

RCG-P = RCG(P(X))

RCG-V = RCG(V(X))

RCG-B = RCG-P
⋂

RCG-V

RCG-C = RCG-P
⋃

RCG-V

RCG-P-ONLY = RCG-P - RCG-B

RCG-V-ONLY = RCG-V - RCG-B

C-P-ONLY = Call(RCG-P-ONLY)

C-V-ONLY = Call(RCG-V-ONLY)

MPG-BAL = (C-P-ONLY
⋃

C-V-ONLY)
⋂

RCG-B

UBC = MPG-BAL
⋃

RCG-P-ONLY
⋃

RCG-V-ONLY

MPG = CG(UBC)
⋂

RCG-C

Figure 4.3 Atlas queries for calculating MPG(X)

Clearly, the reverse call graph RCG(X) includes all call sequences of functions that need to

be examined for checking the matching pair property. The advantage of MPG(X) is that it can

be much smaller than RCG(X) - it means less work for checking the matching pair property.

For the super block lock, MPG(X) is 54% smaller compared to RCG(X). As a justification

for using MPG(X) instead of RCG(X), we have presented later empirical results for the Linux

kernel.

4.3 Empirical Study Setup

We presented two patterns, Identifier Pattern and MPG Pattern, which we believe to be

useful for checking the matching pair property. To validate the usefulness of these patterns,

we conducted an empirical study over 9 versions of Linux kernels spanning from year 2006 to

2009. In this section, we describe the experimental setup and other details in this empirical

study.

4.3.1 Experimental Setup

The Linux kernel is a good candidate for the empirical study - it is open source, wildly used,

and less likely to be biased by individual design pattern used by a small portion of developers.

www.manaraa.com

34

The kernel itself is highly dynamic and critically depends on synchronization mechanisms1.

Mutex-based synchronization mechanisms are heavily used in Linux kernel.

Table 4.1 give an overview of the 9 versions of the Linux kernel, including release date2,

source lines of code (SLOC), number of functions and files. The Atlas tool uses the gcc compiler

to compile and build the code. For this study, the code was compiled for the x86 architecture.

Version Release Date SLOC Files Functions

2.6.16 20-Mar-06 559,870 1939 18486

2.6.18 20-Sep-06 532,651 1845 16294

2.6.20 4-Feb-07 701,580 2147 21576

2.6.22 8-Jul-07 696,574 2169 21991

2.6.24 24-Jan-08 758,861 2362 24382

2.6.26 13-Jul-08 797,448 2452 26075

2.6.28 24-Dec-08 978,071 3173 35113

2.6.30 10-Jun-09 1,043,399 3190 38192

2.6.31 9-Sep-09 1,081,090 3400 39973

Table 4.1 Summary of 9 versions of Linux kernels

4.3.2 Identification of Lock Operations

In Linux, the functions mutex lock(X) and mutex unlock(X) are lock and unlock oper-

ations, where X is the lock identifier. After the introduction of the functions mutex lock()

and mutex unlock() in the Linux version 2.6.16, the subsequent versions use predominantly

these new functions and rarely the other locking functions mutex trylock(), mutex lock

interruptible() and mutex lock killable(). In our analysis, we do not make a distinction

between these different types of locking functions.

4.4 Experimental Results

The experimental study is conducted to address the following 2 questions: 1) In how many

places is the Identifier Pattern used in Linux? 2) Does the MPG Pattern provides small result

in Linux? We will answer these two questions in this section. In this section, we use |MPG(X)|

to denote the size of the MPG(X).

1http://www.ibm.com/developerworks/linux/library/l-linux-synchronization.html
2Dates as shown at http://www.kernel.org

www.manaraa.com

35

Calls

Version lock() or Lock Identifiers Per Lock

unlock() Globals User Types Locals operations

2.6.16 173 8 6 0 12.40

2.6.18 434 41 36 5 5.69

2.6.20 425 64 35 15 4.35

2.6.22 436 67 40 15 4.11

2.6.24 522 86 49 22 3.91

2.6.26 554 83 54 33 3.96

2.6.28 952 127 84 39 4.49

2.6.30 1123 140 96 39 4.77

2.6.31 1220 148 101 39 4.92

Table 4.2 Identifer pattern usage in Linux kernels

4.4.1 Identifier Pattern Usage

We will start with an overview of synchronization in Linux kernel. The amount of syn-

chronization usage increases as the Linux involves. The number of functions invoke the lock

or unlock operations increase from 173 to 1220. So does the usage of the Identifier Pattern

as shown in Table 4.2. The number of global identifer increases from 8 to 148, while the user

type identifer increases from 6 to 101. In all 9 versions of Linux kernels, 5715 out of the entire

set of 5922, which is about 97%, P or V operations are associated with either global variable

identifers or the user defined type identifiers for locks. In the remaining 3% cases, the identifiers

are local variables and P and V operations are performed in the same function. These results

show that the identifier pattern is used heavily across all 9 versions of Linux kernels we have

tested. The average operations per identifer keeps stable excepts the initial version in which

the mutex synchronization is firstly used in Linux. This can be interpreted as independent

matching groups are added without affecting the existing groups. In other sense, separate the

locking operations based on our identifier pattern is effective.

4.4.2 MPG Pattern Size

The distribution of the size of MPG(X) is presented in Table 4.3. The average size of

MPG(X) size is around 8, which is small, except the initial version. Besides, we would also

www.manaraa.com

36

like to know if MPG(X) is small enough for majority of the cases. From Table 4.3, we see that

for majority of the locks, the size of MPG(X) is less than the average 8. For example, for 75%

(186 out of 249) of the locks the |MPG(X)| is less than the average for the latest version 2.6.31.

In no more than 3 signatures do the size of MPG(X) be bigger than 50 which we think is large.

Version
|MPG(X)| Range

Average |MPG(X)|≤ 5 6→ 10 11→ 50 > 50

2.6.16 8 2 3 1 16.29

2.6.18 54 13 9 1 8.79

2.6.20 80 12 5 2 7.87

2.6.22 90 13 3 2 7.49

2.6.24 112 16 5 2 7.57

2.6.26 112 19 5 1 6.97

2.6.28 163 29 16 3 7.70

2.6.30 183 29 21 3 8.06

2.6.31 186 35 25 3 8.24

Table 4.3 Distribution of the |MPG(X)|

An import property about MPG(X) is that it should provide signature reduction compared

with the size of the RCG(X). We presents the amount of reduction data graph from RCG(X)

to MPG(X) in Table 4.4. The average reduction is about 50% while the maximum reduction

for one signature can be as high as 99%. This data gives the empirical evidence that using

MPG(X) instead of RCG(X) in the analysis does simplify the analysis.

Version
Percentage of Reduction

Average Maximum

2.6.16 56% 95.86%

2.6.18 50% 98.55%

2.6.20 50% 99.18%

2.6.22 49% 99.20%

2.6.24 48% 99.52%

2.6.26 47% 99.20%

2.6.28 51% 99.60%

2.6.30 53% 99.89%

2.6.31 56% 99.82%

Table 4.4 Reduction from RCG(X) to MPG(X)

www.manaraa.com

37

4.5 Conclusion and Future Works

The paper presents an empirical study of the mutex synchronization in 9 versions of Linux

kernels. It checks for two patterns that a programmer is likely to use as a good design which

makes it easier to check the MP property - a necessary condition for ensuring correct synchro-

nization. The first pattern, called the identifier pattern, states that a programmer is likely

to use a global variable or a user defined type for the mutex lock. This pattern can greatly

simplify validation of the MP property because it provides a unique identifier to track a lock

without performing a complex data flow analysis. The unique identifier is called the signature

of the lock. The second pattern is based on the matching pair graph, the MPG(X), as the

smallest graph that needs to be examined for checking the matching pair property where X is

the signature for a lock. The bigger the MPG(X), the more work it is to check the matching

pair property. Thus, the desired pattern is that the MPG(X) be small. The paper presents an

automated method to compute the MPG(X) using the Atlas tool from EnSoft.

From the results of the empirical study we can see that the two patterns are followed

extensively in the Linux kernel. Of the totality of signatures from the nine versions, 97% follow

the identifier pattern. The average size of the MPG(X) is 8 with only three signatures where

the size is bigger than 50.

These patterns split the validation work into multiple pieces, each one of them identified

by the unique signatures for a lock. For each piece, MPG(X) provides the set of functions that

need to be examined in detail by taking into account the control flow within the functions. The

detailed analysis may reveal that the MPG(X) is not sufficient and more functions are need

to examine the matching for the particular lock. However, the case where the MPG(X) does

not suffice are likely to be small in number, and indicative of either bad design or additional

patterns that need to be captured. One such example, indicative of bad design, is presented in

the paper.

www.manaraa.com

38

CHAPTER 5. PROVING MATCHING PAIR PROPERTY - A CASE

STUDY WITH LINUX KERNEL

5.1 Challenges of Matching Pair Property

We define a safety property, called the Matching Pair (MP) property as a unified way to

analyze a class of defects in which events must happen in matching pairs. For example, a

memory leak is a violation of the MP property where a memory allocation is not matched with

memory deallocation. In this paper, the MP property is discussed with mutex locking and

unlocking as the matching events.

Let’s denote L as the locking event, U as the unlocking event. o represent object to be

locked/unlocked. Given an execution path P , a locking event Lo is safe on P if it is followed

by Uo on P , with no Lo in between. Locking event Lo is safe if and only if it is safe on all

execution paths.

Definition 1 Matching Pair (MP) Property: Given software satisfies the MP property if and

only if every locking event in the software is safe. A locking event that is not safe will be called

a violation of the MP property.

One challenge is the exponential growth of the number of execution sequences. The num-

ber of possible execution paths grows exponentially with the number of non-nested control

structures. Only 3 non-nested control statements can reach 8 execution paths as shown in

Figure 5.1. Functions with multiple control statements are very common. Many functions has

more than 30 control statement in Linux. For example function tc ctl tfilter has 36 control

statements.

Let us explain with a concrete illustration. The Figure 5.2(a) shows a control flow graph

(CFG) of a function, where Lo and Uo represent locking and unlocking of an object o, cn

www.manaraa.com

39

End (⊥)
n4

n5

n6

n1

n2

n3
c1Start (>) c3c2

Figure 5.1 3 non-nested control statements results 8 execution paths

represents a condition that causes a 2-way branch, and xm represents other events not relevant

to the MP property. Start (>) and End (⊥) represents the starting and ending of an execution

sequence.

In this example, there are four branching conditions and eight execution sequences from

the start (>) of the control flow graph to the end (⊥). There are also multiple L and U

events under different branches. By analyzing all eight execution sequences individually by

vary the conditions of each of the four branching conditions, it is possible to prove/disapporve

the MP property for this function. But there are better ways. First, note that only a subset of

the branching conditions may be important for checking the MP property. For example, the

branches due to the condition c1 are not relevant because the events on both the branches do

not affect the MP property. The branches due to the condition c3 are also not relevant. The

important conditions that relevant to the MP property are called governing conditions. The

value of these conditions will decides the existence and order of important event under different

execution sequences. Also we can omit irrelevant events. After doing that, what remains are

three new type of event sequences called event traces:

• >La⊥, associated with 2 execution sequences;

• >LaUa⊥, associated with 2 execution sequences;

• >LaLbUbUa⊥, associate with 4 execution sequences.

Formal definition of notations and approaches to get event traces will be discussed in later

sections.

The execution sequences, event traces, and the governing conditions are summarized in

Figure 5.2(c). Note that the locking event La is not safe on two out of eight execution paths.

The locking event Lb is safe; it is safe on all four execution paths on which it occurs.

www.manaraa.com

40

E
n
d

(⊥
)

c 1

E
n
d

(⊥
)

x
6

U
b

U
a

x
5

U
a

x
4

c 2

L
b

x
7

c 3

L
a

x
2

c 4

x
1

S
ta
rt

(>
)

x
3

(a
)

C
o
n
tr

o
l

fl
ow

g
ra

p
h
,

lo
ck

in
g

a
n
d

u
n
lo

ck
in

g
ev

en
ts

a
re

h
ig

h
li
g
h
te

d

E
n
d

(⊥
)

U
b

E
n
d

(⊥
)

U
a

U
a

c 2

L
b

S
ta
rt

(>
)

L
a

c 4

(b
)

R
efi

n
ed

fl
ow

g
ra

p
h

w
it

h
o
n
ly

lo
ck

in
g

a
n
d

u
n
lo

ck
in

g
ev

en
ts

a
n
d

g
ov

er
n
in

g
co

n
d
it

io
n
s

E
x
e
c
u

ti
o
n

S
e
q
u

e
n

c
e
s

E
v
e
n
t

T
ra

c
e
s

G
o
v
e
rn

in
g

C
o
n

d
it

io
n

s

>
L
a
c 1
x
1
c 2
x
3
c 4
x
4
⊥

>
L
a
⊥

c 2
,c

4
>
L
a
c 1
x
2
c 2
x
3
c 4
x
4
⊥

>
L
a
c 1
x
1
c 2
x
3
c 4
U
a
⊥

>
L
a
U
a
⊥

c 2
,c

4
>
L
a
c 1
x
2
c 2
x
3
c 4
U
a
⊥

>
L
a
c 1
x
1
c 2
c 3
x
5
L
b
x
7
U
b
U
a
⊥

>
L
a
L
b
U
b
U
a
⊥

c 2
>
L
a
c 1
x
1
c 2
c 3
x
6
L
b
x
7
U
b
U
a
⊥

>
L
a
c 1
x
2
c 2
c 3
x
5
L
b
x
7
U
b
U
a
⊥

>
L
a
c 1
x
2
c 2
c 3
x
6
L
b
x
7
U
b
U
a
⊥

(c
)

E
v
en

t
tr

a
ce

s,
ex

ec
u
ti

o
n

se
q
u
en

ce
s

a
n
d

th
e

g
ov

er
n
in

g
co

n
d
it

io
n
s.

D
iff

er
en

ce
s

in
ea

ch
ex

ec
u
ti

o
n

p
a
th

s
a
re

h
ig

h
li
g
h
te

d

F
ig

u
re

5.
2

E
x
am

p
le

of
ex

ec
u

ti
on

se
q
u

en
ce

s
an

d
E

ve
n
t

T
ra

ce
s

www.manaraa.com

41

It is not rare that the matching unlocking event U is not in the same function that contains

the locking event L event. The inter-procedural matching, not only further increase the number

of execution paths to be analyzed, but it also creates additional challenges.

The inter-procedural matching can be divided into three cases:

• Inter-procedural matching through calls: A function F invokes L event, there is a

sequence of function calls from F to G, and the function G invokes the matching U event.

See Figure 5.3(a) .

• Inter-procedural matching through callbacks: A function F invokes L, there is a

sequence of function callbacks from F to G, and the function G invokes the matching U .

G may invoke U directly or again it could be through a call sequence. The important

distinction is that it involves callbacks. See Figure 5.3(b).

• Inter-procedural matching through invisible control: A function F invokes L,

another function G invokes L, and it is not possible to reach G from F through either

calls or callbacks. See Figure 5.3(c).

Following all the callbacks to the root nodes implies processing the reverse call graph of

the functions that invoke either the L or U or both the events. The reverse call graphs have

several thousand functions. It is not just about the number of functions, at every call site of

each one of these functions, the number of execution paths will continue continue to explode.

There are also other issues. One is, how to tackle the locking and unlocking events that

occur inside a loop. When loop exists, counting the number of execution sequences becomes a

problem. Another issue is, how to handle unstructured code.

Note that the matching L and U must be for the same object. Another challenge is how

to track the object associated with the locking and unlocking events. Figure 5.4 shows a code

example from Linux. There are multiple L (mutex lock) and U (mutex unlock) operations

in this code. In any execution sequence, there are at least two L events. But these L events

possibly operate on two different objects audit cmd mutex and audit filter mutex. Tracking

the objects is a dataflow analysis problem. In tracking the objects, one may encounter the full

www.manaraa.com

42

UL

G

F

calls

(a) F connects with G
through call relation

UL

G

F

callbacks

(b) F connects with G through call-
back relation

Shared Data

UL

GF

access access

(c) There is no visible control flow between F and
G. They may both access some shared data though

Figure 5.3 Different calling relations of inter-procedure matching

www.manaraa.com

43

1 void audit_kill_trees(struct list_head *list) {

2 mutex_lock (& audit_cmd_mutex);

3 mutex_lock (& audit_filter_mutex);

4 while (...) {

5 ...

6 mutex_unlock (& audit_filter_mutex);

7 ...

8 mutex_lock (& audit_filter_mutex); }

9 mutex_unlock (& audit_cmd_mutex);

10 }

Figure 5.4 Code Example - Multiple locking events associate with different objects

blown complexity of the data problem or it may be possible to design an effective notion of

signature to differentiate objects.

5.2 Micro Model

As seen from the last illustration, it is the event traces, i.e., the sequences of locking and

unlocking events and their governing conditions, that we need to focus on for proving the MP

property. The number of event traces can be much smaller than the number of execution

paths. In the illustration, we had eight execution paths but only three sequences of events.

The purpose of the Micro Model is to provide an efficient mechanism to get all possible event

traces without having to traverse all the execution paths. We will discuss in this section the

Micro Model an abstraction of the control flow graph.

The Micro Model is defined with respect to a given set S of events. An event is a discrete

activity in the program. In our case study, the set S consists of locking L and unlocking U

events. An event is associated with a program statement or a block of consecutive program

statements. Each L and U event is associated with one particular program statement or a

block of statement for a given problem. Typically, an event is executed for an object and it is

important to track that object. For example, each locking or unlocking event is for a unique

object. In case of mutex locking and unlocking in Linux, a pointer p to the object is passed as

a parameter.

To properly explain the Micro Model, a few notions are defined as following:

Definition 2 A program execution sequence is a sequence of program statements executed for

www.manaraa.com

44

a single run of a program.

Definition 3 Given a set S of events, an event trace is a subsequence of a program execution

sequence that includes only the events from the set S.

We will discuss separately how the loops will be handled.

5.2.1 Event Flow Graph

We start with the Control Flow Graph (CFG) for a function. We introduce two pseudo

nodes: the top node (>) where the function execution begins and the bottom node (⊥) where

the function execution ends. The one or more return nodes connected to the ⊥ node. The

CFG is a directed graph with potential loop inside. Each execution path corresponds to a path

in the CFG that begins at the top node > and ends at the bottom node ⊥. Each program

execution sequence corresponds to a unique execution path in CFG and it is the the sequence

of nodes on that path. To better understand the structure of the CFG as well as illustrating

the refinement process. Different nodes in the CFG, as well as other graphs defined later, are

shown with different shapes. Start (>) and bot (⊥) are shown as a box. Control branching

nodes are shown as a diamond. Other statement nodes use eclipse.

The next step is to color the CFG. The colored CFG (CCFG) is the CFG where all the

nodes corresponding to the events in the given set S are colored. For our case study, all the

nodes corresponding to the locking and unlocking events are colored. The Figure 5.6(a) shows

the CCFG of the function backlight_update_status for which code is listed in Figure 5.5.

Nodes for L (mutex_lock) and U (mutex_unlock) on object of bd->update_lock are filled

with different color.

As we can see, the size of CCFG are strictly related to the complexity of the function. The

number of statements decides the number of node in the CCFG. Quite often, the CCFG is

much noise for the MP property. Many nodes, edges are just irrelevant to the MP property.

Refinement will make it better to solve the problem. We will explain the refine process using

an example shown in Figure 5.7.

www.manaraa.com

45

1 static inline void backlight_update_status(struct backlight_device *bd) {

2 mutex_lock (&bd ->update_lock);

3 if (bd->ops && bd->ops ->update_status)

4 bd->ops ->update_status(bd);

5 mutex_unlock (&bd ->update_lock);

6 }

Figure 5.5 mutex lock() and mutex unlock() are locking and unlocking operation in mutex

synchronization problem with one signature

mutex_ lock(&bd->upda te_ lock)

bd->ops && bd->ops ->upda te_s ta tus

bd->ops->upda te_s ta tus (bd)

yes

mutex_un lock(&bd->upda te_ lock)

n o

START of backl ight_update_s ta tus

END of backl ight_update_sta tus

(a) CCFG

mutex_ lock(&bd->upda te_ lock)

bd->ops && bd->ops ->upda te_s ta tus

mutex_un lock(&bd->upda te_ lock)

yesn o

START of backl ight_update_s ta tus

END of backl ight_update_sta tus

(b) EFG

mutex_ lock(&bd->upda te_ lock)

mutex_un lock(&bd->upda te_ lock)

START of backl ight_update_s ta tus

END of backl ight_update_sta tus

(c) ETG

Figure 5.6 Graph representations of function shown in Figure 5.5)

Definition 4 Event Flow Graph (EFG) is the CCFG in which only the colored and the con-

dition nodes are retained.

EFG refine the the CCFG for the first step. Compared with CCFG, none relevant nodes

are eliminated in the EFG. Suppose node xm is neither a highlighted event node, nor a control

branching node, in CCFG. It has potentially several incoming edges but only one outgoing

ones. Let (xm, nout) be the outgoing edge, (nin, xm) be any incoming edge to xm. ∀(xin, xm) ∈

CFG, replace it with (xin, xout). xm is also removed in EFG. Note that after the reduction,

after the reduction, there may exits more than one edges between two nodes in the ETG,

merge these edges into one. Apply these processes multiple times until no x nodes remains.

Figure 5.7(a) and 5.7(b) illustrate the refinement process. Node x1 through x7 are elimi-

nated in the EFG. Edges are fixed according to the rule shown earlier.

www.manaraa.com

46

E
n
d

(⊥
)

c 1
E
n
d

(⊥
)

S
ta
rt

(>
)

U
a

c 3
U
a

L
a

c 2

x
6

x
7

x
4

x
5

x
2

x
3

x
1

c 5

c 4

(a
)

C
o
lo

re
d

C
F

G
,

n
o
d
es

to
b

e
el

im
in

a
te

d
in

E
F

G
a
re

sh
ow

n
in

a
d
a
sh

ed
b

ox

E
n
d

(⊥
)

E
n
d

(⊥
)

U
a

U
a

c 2
c 1

S
ta
rt

(>
)

c 3

L
a

c 5

c 4

(b
)

E
F

G
,

su
b
g
ra

p
h
s(

w
it

h
co

n
tr

o
l

st
a
te

m
en

t)
to

b
e

el
im

in
a
te

d
in

E
T

G
a
re

sh
ow

n
in

a
d
a
sh

ed
b

ox

E
n
d

(⊥
)

E
n
d

(⊥
)

U
a

U
a

c 2
S
ta
rt

(>
)

L
a

c 4

(c
)

E
T

G

F
ig

u
re

5.
7

G
ra

p
h

re
fi

n
e

il
lu

st
ra

ti
on

fr
om

C
F

G
to

E
F

G
to

E
T

G

www.manaraa.com

47

5.2.2 Event Trace Graph

Next we will define the Event Trace Graph (ETG) as a reduction of the EFG. We will

use ETG as the Micro Model of a function. The reduction from EFG to ETG will eliminate

some of the control nodes. The goal is to retain only the minimal number of control nodes

for capturing the necessary event traces. No every control statement is important to the MP

property. This was illustrated earlier through an example shown in Figure 5.2, now we will

formalize the reduction.

Let G = {g1, g2, ..., gn} be an EFG. B = {b1, b2, ..., bm} be an induced subgraph of G with

at lease two nodes. s is the set of events.

Definition 5 Subgraph B has a unique sink, denoted as bsink, iff

• for any node v ∈ B, there exists a path from v to bsink, and

• if (bj , gk) is an edge in G, where bj ∈ B, gk /∈ B, then bj = bsink.

Suppose an EFG (E) contains a subgraph B with unique sink bsink. If bsink is an event node

or a control branching node, and other nodes in B are control branching nodes. The EFG can

be transferred into a new flow graph Ē, where subgraph B in Ē is replaced with node bsink.

Any edge (gk, bj)|bj ∈ B, gk /∈ B is replaced with (gk, bsink) in Ē. Figure 5.7(b) highlighted the

control statements to be eliminated from EFG to ETG.

Definition 6 ETG is an event graph without subgraph with a unique sink.

Figure 5.7(c) shows the final ETG.

Definition 7 For any Control Flow Graph G and a set of event s, the corresponding ETG is

unique.

It’s not hard to prove that for any ETG, the corresponding ETG is unique. ETG only

keeps the minimum necessary control with respect to the event. Non-event statements as well

as non-critical control statements are eliminated.

www.manaraa.com

48

Definition 8 Control branching nodes in ETG are called governing conditions, as they are

relevant to the MP property.

The reduction from CCFG to ETG w.r.p to number of nodes may be significant. Figure 5.8

and Figure 5.9 show the comparison between CCFG and ETG of function acpi_device_register.

The number of nodes and control statements reduces from 51 and 10 in CCFG to only 8 and

2 in the corresponding ETG.

Each execution path is mapped to a unique path in the ETG. A large number of execution

paths are mapped to a single path in the model. In our case study of the Linux kernel, the

model has led to dramatic reduction of complexity in going from the CFG to ETG of a function.

To illustrate this reduction, we give a concrete example of function from the Linux kernel in

which 193 execution paths are mapped to 3 paths in the model. As will become clear later, the

model retains all the critical information necessary for proving the safety property.

5.3 Macro Model

The Micro Model is for abstracting a function to minimize the work needed to go through

execution paths within a function. The Micro Model is constructed in the form of ETG which

would typically much smaller graph than the CFG. Thus, the Micro Model is a minimization of

the CFG. We will now introduce the Macro Model as a minimization of the reverse call graph.

As we have discussed before, the matching events can be in two different functions and

we have to construct event traces that span across functions. We defined three categories of

intra-procedural mapping and noted that the analysis extends to the entire reverse call graph

(RCG). Here we will discuss an abstraction, which we call the Matching Pair Graph (MPG,

which typically is much smaller than the RCG and it suffices to prove the matching pair

property.

As shown in Figure , function calls are represented with shape hexagon.

www.manaraa.com

49

return result;

END of acpi_device_regis ter

found = 1

kf ree (new_bus_ id)

new_bus_id = kzal loc(s izeof(s t ruct acpi_device_bus_id) , GFP_KERNEL);

! n e w _ b u s _ i d

pr intk(<3>ACPI: Memory a l locat ion error

)

yes

mutex_lock(&acpi_device_lock)

n o

device->dev.parent = &parent ->dev

device->dev .bus = &acpi_bus_type

int result;

s t ruc t acpi_device_bus_id *acpi_device_bus_id , *new_bus_id ;

int found = 0;

START of acpi_device_regis ter

INIT_LIST_HEAD(&dev ice ->node)

INIT_LIST_HEAD(&device->wakeup_l i s t)

INIT_LIST_HEAD(&device->chi ldren)

! f o u n d

acp i_dev ice_bus_ id = new_bus_ id

yes

dev_se t_name(&device->dev, %s:%02x, acpi_device_bus_id->bus_id , acpi_device_bus_id->ins tance_no)

n o

break;

s t rcpy(acpi_device_bus_id->bus_id , device->f lags .hardware_id ? device->pnp.hardware_id : device)

acpi_device_bus_id->ins tance_no = 0

l is t_add_ta i l (&acpi_device_bus_id->node, &acpi_bus_id_l is t)

device->parent

device->wakeup.f lags .val id

n o l is t_add_tai l (&device->node, &device->parent->chi ldren)

yes

l is t_add_tai l (&device->wakeup_l is t , &acpi_wakeup_device_l is t)

yes

mutex_unlock(&acpi_device_ lock)

n o

mutex_unlock(&acpi_device_ lock)

l is t_del(&device->wakeup_l is t)

dev ice ->remova l_ type = ACPI_BUS_REMOVAL_NORMAL

return 0;

printk(<3>ACPI: Error creat ing sysfs interface for device %s

, dev_name(&device ->dev))

result

n o

yes

resul t = acpi_device_setup_fi les(device)

l i s t_del (&device->node)

device->parent

n o

yes

mutex_lock(&acpi_device_lock)

printk(<3>%s %s: Error register ing device

, dev_dr iver_s t r ing(&device->dev) , dev_name(&device->dev))

end :

device->parent

yes

n o

resul t = device_regis ter(&device->dev)

result

n o yes

device->dev.re lease = &acpi_device_release

re turn -ENOMEM;

acpi_device_bus_id = . . .

p refe tch(acpi_device_bus_id->node.next) , &acpi_device_bus_id->node != (&acpi_bus_id_l i s t)

acpi_device_bus_id = . . .

n o

!s t rcmp(acpi_device_bus_id->bus_id , device->f lags .hardware_id ? device->pnp.hardware_id : device)

yes

n o

acpi_device_bus_id->ins tance_no++

yes

Figure 5.8 CCFG of function acpi device register

www.manaraa.com

50

START of acpi_device_regis ter

! n e w _ b u s _ i d

END of acpi_device_regis ter

mutex_lock(&acpi_device_lock)

mutex_unlock(&acpi_device_ lock)

mutex_lock(&acpi_device_lock)

mutex_unlock(&acpi_device_ lock)

resultyes

n o

n o

yes

Figure 5.9 ETG of function acpi device register, compared with CCFG shown in Fig-

ure 5.8, the size is greatly reduced

End (⊥)
La

Start (>)
x2

c2
c1x1

Ua

Figure 5.10 Non-structure Example

End (⊥)
La

Start (>)
c2

c1

Ua

Figure 5.11 Non-structure Example Reduced

End (⊥)

Ua

Ua

Start (>) x2

x3

c1x1 La

La

Figure 5.12 Loop example - matching property always satisfied for any numbers of loop iter-

ations

www.manaraa.com

51

End (⊥)

Ua

Ua

Start (>) c1La

La

Figure 5.13 Loop example with non-important statements (xn) removed

End (⊥)

Ua

Start (>) x2c1x1 La

Figure 5.14 Loop example - matching property fail with 2 or more iterations

l ist_del_init(&victim->list)

mutex_unlock(&audi t_f i l te r_mutex)

prune_one(v ic t im) mutex_ lock(&audi t_cmd_mutex)

mutex_lock(&audi t_f i l ter_mutex)

!list_empty(list)

START of audi t_ki l l_ t rees

END of audit_ki l l_trees

victim = . . .

ki l l_rules(victim)

struct audit_tree *victim;

yes

mutex_unlock(&audi t_f i l te r_mutex)

n o

mutex_lock(&audi t_f i l ter_mutex)

mutex_un lock(&aud i t_cmd_mutex)

(a) CFG of loop example

mutex_unlock(&audi t_f i l te r_mutex)

mutex_lock(&audi t_f i l ter_mutex) mutex_lock(&audi t_f i l ter_mutex)

!list_empty(list)

START of audi t_ki l l_ t rees

END of audit_ki l l_trees

yes

mutex_unlock(&audi t_f i l te r_mutex)

n o

(b) ETG

Figure 5.15 Loop Example

www.manaraa.com

52

5.3.1 Matching Pair Graph

Finding functions related to the event of interest is a critical part of solving the problem.

For matching pair problem, event U is required to follow event L in the event trace. As shown

in Figure 5.3, U events may belong to either the child function or parent function in call graph.

The execution order and dependencies of functions is important to solve the problem.

Using (reverse) call graph to find the relation between function is an straight forward

approach. For any L event inside function A(), the only functions B() where U belongs to,

are the functions that has same common ancestor P() with A(). Function P() links event

L and U. So for any A() with L insides, all its ancestor functions and the descendents of

ancestor functions are the possible matching candidate. But as discussed in [19], the number

of potential functions involves explodes, which many of them are not really affecting the events

execution. To overcome such problem, matching pair graph (MPG) is defines for capturing

only the important functions.

Figure 5.16 shows the amount of simplification lead my using MPG instead of call graph.

5.4 Proving Matching Event Properties

5.4.1 Event Signature

The first challenge of solving the matching pair problem is to identify whether two giving L

and U events operate on the same object. Traditional approaches analyze the dataflow starting

from L event and track the information until the object terminates or exits the analyzable

scope. It produce good accuracy while suffer from two aspects, speed and scope.

These data flow analysis methods try to capture more information to make the tracking

more precious, where the complexity of the method make they suffer in two areas, speed and

working range. Due to the complexity of the method, inter-procedure analysis become infThere

exists a faster way to solve the problem. Programmer developer uses

In general, developers probably don’t use sophisticated tools to help tracking the data

relation when writing code. They use some easy remember patterns. For this particular

problem, developers would generally use naming patterns to related objects. By looking at

www.manaraa.com

53

Further reduction by applying Signature and MPG

Reduction from the system to the related function

Figure 5.16 MPG greatly reduce the amount of functions involved in detailed analysis

www.manaraa.com

54

source files
include ..

Parsing and
event

populating
(Eclipse

CDT/Atlas)

MPG for each
signature Model Refine

Model
Verifier
(State

machine)

Satisfied or
detailed

error report

Matching
Pair

Requirement

Start

End

Start

End

...

CFGs for each
function

Start

End

...

ETGs for each
function (models)

Start

End

Figure 5.17 Process Flow of Event-based verification

www.manaraa.com

55

the code itself, developer would immediate know event mutex lock(audit cmd mutex) and

mutex unlock(audit filter mutex) don’t operate the same object w/o using any special

tools.

We provides two ways to identify such naming patterns.

5.4.1.1 Global Signature

As shown in Figure 5.4, mutex lock() and mutex unlock() accepts an argument. Further

more, the argument is not some local variable, but global variable. This information pro-

vides a strong clue of which two or more events would possible operate on the same object.

We think mutex lock() at line 2 and line 3 are not related because audit cmd mutex and

audit filter mutex two different global variables. In general, no developer would write code

that mix two or more global variables together for the same object. Using global variable as

the naming patten is called global signature.

Definition 9 If a global variable g is used as an argument to L or U events, g itself is called

a Global Signature.

Signature can be used to group related L and U events. We say two events L and U are

potentially related if and only if L and U has the same signature. Let’s denote Ls and Us as

the L and U events with signature s. In the entire, multiple instance of Ls and Us event may

exist. Next part of paper will discuss how to combines this information with event trace to

analyze the matching pair problem.

Signature approach provides a fast way of finding the relation between events. It is also

capable of find potential related events across functions. Signature approach is an approximate

approach, there are unavoidable limitations. Theoretically, signature can produce incorrect

matching. But we think this is rear, our analysis of Linux and XINU operating systems

supports out claim. (Provide more concrete number to support this argument).

www.manaraa.com

56

1 static inline void backlight_update_status(struct backlight_device *bd) {

2 mutex_lock (&bd ->update_lock);

3 if (bd->ops && bd->ops ->update_status)

4 bd->ops ->update_status(bd);

5 mutex_unlock (&bd ->update_lock);

6 }

Figure 5.18 Type signature for mutex lock and mutex unlock

5.4.1.2 Container Type Signature

Definition 10 If a variable a->v or a.k is used as the argument to L or U events, A.v is

called a Container Type Signature, where A is the data type name of value a.

Figure 5.18 shows an code example of container type signature. In this example variable

bd->update lock is the argument for both L and U events. We also known that the type

name of bd is struct backlight device. By definition 10, the container type signature in

this example is backlight device.update lock.

5.4.2 Successor and Predecessor Pattern

From the definition of matching pair problem, successor events of an the L event are im-

portant. Event successor set is defined as the collection of all successor.

Definition 11 Successor Set, SSe, of event e is the set of all successor of e in all event traces.

As we know, there are only 4 types of events defined in an event trace. Only 3 of them, L,

U and ⊥ are possible successor of any L event. Though, the event set may have large number

of elements. the types of successor of an L is not larger than 3. Successor pattern is defined

to represent the existence of different event types in successor set. Let’s use Lk to represent

whether there exists a L in the SSe, Lk = L means yes, Lk = − means no. Similarly, Uk and

⊥k for events U and ⊥ can be defined.

Definition 12 Successor pattern, πe, of an event e is a tuple (Lk,Uk,⊥k), where Lk ∈

{L,−}, Uk ∈ {U,−},⊥k ∈ {⊥,−}.

www.manaraa.com

57

πe = (−, U,−) means event e has one or more U successors, but no L and ⊥ successor.

πe = (L,U,⊥) means e has all 3 possible successors. There are 8 total successor patterns

available. But since any none ⊥ event has at least one successor event, πe 6= (−,−,−), if

e 6= ⊥. The number of possible π in this cases is 7.

5.4.3 Matching Difficulty Classification

Successor pattern is composed of 3 elements of binary values, there are 7 possible patterns

for any none ending event. Successor pattern (−,−,−) is not feasible since every none ending

event has at least one successor event. These 7 patterns can be separated into 3 difficulty

levels based on the amount of additional information required to answer the problem – whether

U is followed by L under all feasible execution paths. Right now, 2 types of information are

considered: whether the value of condition statements are important to get a conclusion; and

whether invisible control flow could be involved in the problem.

Based on the above information, we classify the successor pattern into 3 difficulty levels:

Easy: Result known, condition doesn’t matter

Medium: Require analyze control conditions to know result

Hard: invisible control flow may also be required to get result

The classification is based on the successor pattern by the following rules:

if Only one types of event in π and its not ⊥ easy

else if ⊥ ∈ π & U not in π hard

else - medium

Table 5.1 shows the classification of successor patterns and their difficulty levels.

5.5 Linux Mutex Matching Evaluation

To evaluate the effectiveness and performance of signature pattern method, we applied the

method on the problem of Linux mutex lock synchronization. In Linux, mutex are locked with

function mutex lock()1, and unlocked by mutex unlock(). These functions will corresponding

1In some cases, mutex trylock, mutex lock interruptible, are 2 other functions are also used for locking
mutex.

www.manaraa.com

58

F

G

x1

G

End G (⊥)

End F (⊥)

Ua

Ua

La

La

La

c2

Start G (>)

Start F (>)

c1

(a) Function F Call G, the MP property should be analyzed by
combining both of them

F

G

End F (⊥)

Ua

Ua

La

LaLa

Start F (>)

c1

(b) Merge G into F , none important nodes
are eliminated

Figure 5.19 Inter-procedure property matching

www.manaraa.com

59

Table 5.1 Classification based on successor pattern

Type Succ. Patt. Classification Diffculity

1

I

(L, U, ⊥)

Possibly validated with visible flow Medium2 (L, U, –)

3 (–, U, ⊥)

4
II

(L, –, ⊥)
Invisible flow related Hard

5 (–, –, ⊥)

6 III (L, –, –) Error Easy

7 IV (–, U, –) Validated Easy

to event L and U respectfully. Global and type signatures are used to related L and U on the

same object. 3 versions of Linux kernel have been tested.

Linux source code is parsed with eclipse CDT. CCFG for each function and MPG for each

signature are generated with Atlas plug-in from EnSoft corp,. Later, CCFG and MPG are used

together to get the ETG and eventually successor pattern for each instance of L. Predecessor

pattern for all instances of U are also generated as it provides evidences for analyzing invisible

control flow.

5.5.1 Linux Mutex Matching Evolution

3 versions of Linux kernel has been tested and evaluated. The evolution results are shown

in Table 5.2. The number of locking events has increased significantly from 487 total in version

2.6.26 to 1251 in version 2.6.31. Of all these locking events, about 90% of the cases are able

to be fully validated (type IV) by the successor pattern. As we expected, majority of the

validated cases only involves intra-procedure matching, the remaining 5% are inter-procedure

matching cases. We don’t find any absolute error where locking is followed by another locking

under all possible event tracks (type III), which is good sign. About 7% percent of the locking

require further path feasibility verification (type I) to get a complete verification. Another

small portion of the cases verification (type II) require invisible control flow analysis. To fully

understand and verify the last two cases, manual inspection is required, but can be assisted

with information provided from MPG and ETG.

www.manaraa.com

60

Table 5.2 Validation Results for 3 versions of Linux Kernel

version # of locks (NL) I II III
IV

signature fail
Ratio of

intra-proc. inter-proc. IV/NL

2.6.26 Global 257 17 4 0 231 5 0 0.92

2.6.26 Type 230 31 4 0 182 10 3 0.83

2.6.28 Global 452 37 6 0 401 8 0 0.90

2.6.28 Type 460 45 5 0 398 9 3 0.88

2.6.31 Global 621 34 10 0 562 15 0 0.93

2.6.31 Type 630 50 4 0 559 13 4 0.91

5.5.2 ETG Reduction

Compared with traditional control flow graph, instead of keep all statement and control

branches, ETG only captures the important events as well the critical execution branches/con-

trol branches that may affect the order/existance of important event under event traces. It

makes the graph representation easier to understand and more compact. The number of event

nodes, edges as well as control nodes reduces compared with CFG. Reduction results of Linux

kernels are shown in Figure 5.4.

ETG contains 70% less statement nodes and edges. More than 55% of the control statements

are eliminated compared with original CFG. These result is very consistent for all 3 versions

of Linux.

5.5.3 Linux Case Analysis

By going through the mutex synchronization matching of Linux kernel. We find several

interesting type of matchings. Some examples are presented here.

5.5.3.1 Many to Many Event Mapping

This example in Figure 5.20 is the ETG of function snd timer open(), which shows:

• Multiple locking and unlocking events may appear in the same function. Same L can

match with different U under different conditions, vice versa.

• The first event by execution function snd timer open() is either and L event or ⊥ event.

www.manaraa.com

61

T
ab

le
5
.3

C
o
m

p
a
re

d
w

it
h

C
F

G
,

th
e

n
u

m
b

er
of

n
o
d

es
an

d
ed

ge
s

in
E

T
G

re
d

u
ce

d
ab

o
u

t
7
5%

.

C
on

tr
o
l

st
a
te

m
en

ts
re

d
u

ce
d

ab
ou

t
60

%
in

3
v
er

si
on

s
of

L
in

u
x

ve
rs

io
n

C
F

G
E

T
G

R
a
ti

o

n
o
d

es
(c

n
)

ed
ge

s
(c

e)
ct

rl
.

st
m

t.
(c

c)
n

o
d

es
(e

n
)

ed
ge

s
(e

e)
ct

rl
.

st
m

t.
(e

c)
en

/
cn

ee
/

ce
ec

/
cc

2
.6

.2
6

G
lo

b
a
l

71
5
8

82
7
3

13
59

18
98

21
30

5
47

0
.2

7
0.

2
6

0.
4
0

2
.6

.2
6

T
y
p

e
94

5
1

1
11

2
6

19
68

23
71

28
90

8
89

0
.2

5
0.

2
6

0.
4
5

2
.6

.2
8

G
lo

b
a
l

13
2
6
4

1
53

8
3

26
54

35
94

41
65

11
47

0
.2

7
0.

2
7

0.
4
3

2
.6

.2
8

T
y
p

e
15

2
5
4

1
80

9
2

32
03

37
17

45
40

13
39

0
.2

4
0.

2
5

0.
4
2

2
.6

.3
1

G
lo

b
a
l

18
7
7
6

2
21

2
2

39
63

48
57

56
97

15
99

0
.2

6
0.

2
6

0.
4
0

2
.6

.3
1

T
y
p

e
23

0
0
4

2
74

3
3

48
80

53
52

66
69

20
23

0
.2

3
0.

2
4

0.
4
1

www.manaraa.com

62

T
a
b
le

5
.4

6
ex

a
m

p
le

s
o
f

g
ra

p
h

si
ze

co
m

p
a
ri

so
n

b
et

w
ee

n
C

F
G

a
n
d

E
T

G
fr

o
m

L
in

u
x

2
.6

.3
1

F
u
n
ct

io
n

S
ig

n
a
tu

re
C

F
G

E
T

G
R

a
ti

o
n
o
d
es

(c
n
)

ed
g
es

(c
e)

ct
rl

.
st

m
t.

(c
c)

n
o
d
es

(e
n
)

ed
g
es

(e
e)

ct
rl

.
st

m
t.

(e
c)

cn
-

en
ce

-
ee

cc
-

ec

sn
a
p
sh

o
t

io
ct

l
p
m

m
u
te

x
1
6
0

2
1
0

3
0

7
1
0

4
1
5
3

2
0
0

2
6

zi
so

fs
re

a
d
p
a
g
e

zi
so

fs
zl

ib
lo

ck
1
7
3

2
1
1

3
9

2
1

3
7

1
7

1
5
2

1
7
4

2
2

ie
ee

8
0
2
1
1

re
g
is

te
r

h
w

rt
n
l

m
u
te

x
1
2
9

1
5
7

2
9

1
6

2
5

1
0

1
1
3

1
3
2

1
9

m
ig

ra
ti

o
n

ca
ll

ca
ll
b
a
ck

m
u
te

x
1
1
8

1
5
8

3
2

5
5

1
1
1
3

1
5
3

3
1

tc
ct

l
tfi

lt
er

rt
n
l

m
u
te

x
1
3
8

1
7
5

3
6

2
6

4
7

2
2

1
1
2

1
2
8

1
4

cg
ro

u
p

g
et

sb
cg

ro
u
p

m
u
te

x
1
0
9

1
4
3

3
5

1
3

1
9

7
9
6

1
2
4

2
8

www.manaraa.com

63

mutex_lock(®is ter_mutex)

!t imeri

START o f snd_ t imer_open

t id ->dev_c lass == SNDRV_TIMER_CLASS_SLAVE

END of snd_ t imer_open

t id ->dev_sc lass <= SNDRV_TIMER_SCLASS_NONE | | t i d ->dev_sc lass > SNDRV_TIMER_SCLASS_OSS_SEQUENCER

yes

mutex_lock(®is ter_mutex)

n o

n o

yes

! t imer

mutex_unlock(®is te r_mutex)

yes

! t imer

n o

mutex_lock(®is ter_mutex)

mutex_unlock(®is te r_mutex)

yes

! l i s t_empty(&timer->open_l is t_head)

n o

mutex_unlock(®is te r_mutex)mutex_unlock(®is te r_mutex)

t imeri->flags & 0x00000040

!timeri

n o

mutex_unlock(®is te r_mutex)

yes

yes

n o

n o

mutex_unlock(®is te r_mutex)

yesn o

mutex_unlock(®is te r_mutex)

yes

Figure 5.20 ETG of function snd timer open()

nfn l_ lock

nfnet l ink_rcv

nfn l_un lock

ctnet l ink_parse_nat_setup nfnet l ink_subsys_unregis ter nfnet l ink_subsys_regis ter nfne t l ink_rcv_msg

Figure 5.21 MPG of signature nfnl mutex

5.5.3.2 Invisible Control Flow

MPG of signature infnl mutex is shown in Figure 5.21.

In the figures of event trace graph (ETG), square box represents the start and end of a

function. Diamond represent the control conditon while eclipse represents other statement.

Event are highlighted differently based on its type. L event is represented with light blue. U

event is represented with yellow. To track inter-procedure matching/problen, functions may

call L or U events by itself or through a series of call chains are also highlighted with shape

hexagon and color light blue. As shown in Figure 5.22, the ETG of both functions nfnl lock()

and nfnl unlock() are very simple. They call mutex lock() or mutex unlock() respectively,

but not both.

Let’s look at function nfnetlink rcv msg() of which the ETG is shown in Figure 5.23(a).

This function contains two types of event traces:

1. No function call of either nfnl lock() or nfnl unlock();

2. Exits function call of both nfnl lock() and nfnl unlock() in the order that any nfnl unlock()

www.manaraa.com

64

mutex_ lock(&nfn l_mutex)

END of nfn l_ lock

START of n fn l_ lock

(a) ETG of nfnl lock()

mutex_un lock(&nfn l_mutex)

END of n fn l_un lock

START of n fn l_un lock

(b) ETG of nfnl unlock()

Figure 5.22 ETG of function nfnl lock() and nfnl unlock()

followed by one and only one nfnl lock() call.

The event traces represented with regular expression would be >(UL)∗⊥, where ∗ represents

0 or more times.

By looking at nfnetlink rcv() itself, it is not clear whether any event L will eventu-

ally match with a U event. Since there does not exist a matching U for the last L event

in the event trace inside this function. Inter-procedure analysis must be involved to answer

this question. But there doesn’t exist any visitable function calls to nfnetlink rcv() in the

MPG(nfnl mutex). The only possibility is there exists a invisible flow, possibly by function

pointer.

By checking another function nfnetlink rcv() in MPG, the desired function pointer can

be found between two function calls nfnl lock() and nfnl unlock(). The combined event

traces represented with regular expression will becomes >L(UL) ∗ U⊥. Any L event in the

trace is followed by a U event. No L is left unmatched.

5.5.3.3 Infeasible Control Path

The MPG of signature register mutex is shown in Figure 5.24. As we can see, there is a

long chain from the top caller function snd seq open() to snd timer open() and snd timer close().

All of the 3 functions contains L event inside. By looking at the ETG of snd seq open(), we

can find the event trace in which L in snd seq open() is directly followed by another L event in

snd seq open() or snd seq close() through a series of functions as shown in Figure 5.24. Two

consequent L events of the same object may lead to deadlock which is a serious problem. The

question is whether the execution path associated with this problematic event trace is feasible?

www.manaraa.com

65

START of n fne t l ink_rcv_msg

securi ty_net l ink_recv(skb, 12)

END of nfne t l ink_rcv_msg

nlh->nlmsg_len < ((s izeof (nfgenmsg)) . . .

yes

!ss

n o

yes

n o

!nc

yes

err < 0

n o

yes err == -11

n o

n o

yes

n o

nfn l_un lock()

yes

nfn l_ lock()

!ss

yes

n o

(a) ETG of nfnetlink rcv msg()

nfn l_ lock()

ne t l ink_rcv_skb(skb , &nfne t l ink_rcv_msg)

nfn l_un lock()

START of n fne t l ink_rcv

END of nfnet l ink_rcv

(b) ETG of nfnetlink rcv()

Figure 5.23 nfnetlink rcv() and nfnetlink rcv msg()

www.manaraa.com

66

seq_free_cl ient1

snd_seq_queue_cl ien t_ leave

snd_seq_t imer_c lose

snd_t imer_c lose

s n d _ s e q _ q u e u e _ u s e

snd_seq_ t imer_open

queue_dele te

snd_ t imer_open

s n d _ s e q _ o p e n

Figure 5.24 MPG of signature register mutex

This question can not be answered automatically through our successor pattern. But using

the critical control condition provided in ETG of snd seq open() shown in Figure 5.25(a) and

its child seq free client1() shown in Figure 5.25(b). We found contradiction conditions. In

snd seq open(), for function seq free client1() to be invoked, condition client == ((void

*)0) must evaluate to false. But inside function seq free client1(), only when !client

evaluate to false will snd seq queue client leave() be invoked. Combine the information

above, we may get the conclusion that snd seq queue client leave() will never be invoked

through snd seq open(). As we can see in the MPG of signature register mutex, without

snd seq queue client leave(), there will be no possible path from snd seq open() to either

snd timer open() or snd timer close(), which means no possible double lock of the same

object.

5.6 Conclusion and Future Work

Matching pair problems like mutex synchronization has been difficulty problem for some

time []. Research has applied approaches like static analysis and model based verification to

the problem, but these approaches all facing the some problems especially the ability to handle

matching across multiple functions or with invisible control flow. In this paper, we has discussed

a different approach which scales to large system with complex matching possible. We first

discussed the model and general model for validate matching pair problem. Later, we discussed

www.manaraa.com

67

cl ient == ((void *)0)

mutex_unlock(®is te r_mutex)

yes

mode & 0x0001

n o

END of snd_seq_open

user->f i fo == ((void *)0)

yes

mutex_unlock(®is te r_mutex)

n o

START o f snd_seq_open

mutex_lock_interrupt ible(®is ter_mutex)

n o

yes

seq_free_client1(client)

mutex_unlock(®is te r_mutex)

yes n o

(a) ETG of snd seq open()

!client

END of seq_free_cl ient1

yes snd_seq_queue_cl ient_ leave(c l ient ->number)

n o

START of seq_free_cl ient1

(b) ETG of function seq free client1()

Figure 5.25 snd seq open() and seq free client1()

the notion of event and event traces to represent the execution order of the important actions

during different program executions. To trace more precise information, the same action over

different object instance are consider different. Signatures were defined as an approximation

to differ instances. Successor pattern was latter introduced to properly handle multiple event

traces as the same time during the analysis. With the above techniques, matching within

a function could be solved already. But there still remains portion of the problems requires

further analysis. This remain part generally involves inter-process behavior or even invisible

control, To handles these properly, we discussed Matching Pair Graph as well as extending the

Event Trace Graph for multiple functions.

We have applied this techniques on 3 versions of Linux kernels and try to analyze the

mutex synchronization problem thoroughly. Over more than 2600 cases, our approach solves

more than 90% of them, in the remaining of the cases, which requires further analysis of the

execution condition, our ETG provides informative results which generally remove 60% of the

conditions which are irrelevant to the answer.

For future works, there are multiple paths to go. For unsolved the problems, validation

becomes the satisfiability problem of critical control conditions remain the ETG. Right now,

we solve it manually, but automatic process could be added to make the analysis more complete.

ETG discard non-critical information from the general graph representations like control flow

www.manaraa.com

68

graph. It can be applied to many other problems besides the matching pair problem. Using it

as the platform to solve other event trace based problem will make it more interesting.

www.manaraa.com

69

CHAPTER 6. SUMMARY AND CONTRIBUTION

The main contributions of this dissertation are:

• Matching Pair Graph: The difficulty of testing and other static program analysis

techniques are for complex system which may involve large number of functions. Matching

Pair Graph is designed to overcome such limitation. It greatly reduces the number of

functions to be analyzed for proving the matching pair property.

• Event Trace Graph: Path explosion is another difficulty for the program analysis. The

number of execution traces increase exponentially as the number of control statements

increases, the complexity to solve such problem increases accordingly. Event Trace Graph

is designed to address this difficulty. Only a subset of control statement which are critical

to the event trace are kept, while majority of non-related branches are eliminated. we

were able to prove the correctness of more than 90% of the synchronization instances in

the Linux kernel. For each remaining case, we produced relevant ETGs for the further

investigation by human experts.

• Signatures: Tracking data flow information is another challenging problem. Unlike

compilers developers use patterns to track the data. We introduced the notion of signature

which is similar to the patterns used developer.

• Empirical Study of Matching Pair Property of Linux: Mutex matching pair

property has been studied and discussed in this research. 8 versions of Linux kernels

spanning over 3 years has been studied and examined. 3 versions has been verified in

more detail as the ETG for each function has been generated and verified. This is the

first research of its kind.

www.manaraa.com

70

APPENDIX A. LIST OF SIGNATURES AND THEIR MATCHING

PAIR PROPERTIES

Due to the limitation of space, the detailed signature information from only one version

of Linux (2.6.31) is listed. All other versions analyzed have the similar report. Description of

Table A.1 are:

ID: ID of each signature, count separately for global and type signatures

Signature Name: Name of the signature

Type: Type of the signature. G for global, T for type

NL: Number of functions contains L events (mutex lock etc.)

NU : Number of functions containing U events (mutex unlock)

RCG-C: Size of the reverse call graph

MPG-BAL: Number of balanced nodes

UBC: Number of UBC nodes

MPG: Number of MPG nodes

Table A.1: Detailed information about signature and MPG of Linux

version 2.6.31

ID Sigature Name Type NL NU RCG-C MPG-BAL UBC MPG

1 event lock G 2 2 50 2 2 2

2 acpi device lock G 3 3 24 3 3 3

3 acpi link lock G 4 4 8 4 4 4

4 afinfo mutex G 2 2 8 2 2 2

5 all stat sessions mutex G 2 2 2 2 2 2

6 allocated ptys lock G 2 2 8 2 2 2

7 attribute container mutex G 6 6 87 6 6 6

8 audit cmd mutex G 3 3 3 3 3 3

www.manaraa.com

71

9 audit filter mutex G 14 14 88 14 14 14

10 bio slab lock G 2 2 66 2 2 2

11 blk tree mutex G 1 1 1 1 1 1

12 block class lock G 3 3 17 3 3 3

13 br ioctl mutex G 1 1 1 1 1 1

14 brd devices mutex G 1 1 1 1 1 1

15 bsg mutex G 6 6 62 6 6 6

16 btrace mutex G 1 1 2 1 1 1

17 callback mutex G 11 11 21 11 13 13

18 cdrom mutex G 3 3 5 3 3 3

19 cfg80211 mutex G 10 10 60 10 10 10

20 cgroup mutex G 13 13 34 23 25 25

21 chrdevs lock G 3 3 63 3 3 3

22 cm sbs mutex G 4 4 8 4 4 4

23 con buf mtx G 1 1 1 1 1 1

24 core lock G 9 9 36 9 9 9

25 cpu add remove lock G 1 1 228 8 10 12

26 cpufreq governor mutex G 3 3 10 3 3 3

27 cpuidle lock G 2 2 12 3 5 5

28 crypto default rng lock G 2 2 6 2 2 2

29 dbs mutex G 5 5 5 5 5 5

30 dcookie mutex G 3 3 3 3 3 3

31 device add lock G 1 1 7 1 1 1

32 dlci ioctl mutex G 1 1 1 1 1 1

33 dnotify mark mutex G 2 2 132 2 2 2

34 dpm list mtx G 9 9 900 9 11 11

35 dst gc mutex G 2 2 2 2 2 2

36 epmutex G 2 2 6 2 2 2

37 evdev table mutex G 2 2 5 2 2 2

38 event mutex G 7 6 14 5 8 8

39 ext devt mutex G 2 2 83 2 2 2

40 fsnotify grp mutex G 2 3 8 2 4 4

41 fw lock G 4 4 26 4 4 4

42 genl mutex G 1 1 25 8 10 10

www.manaraa.com

72

43 global host template mutex G 2 2 19 2 2 2

44 hash mutex G 2 2 4 2 2 2

45 hash resize mutex G 2 2 2 2 2 2

46 hid open mut G 2 2 6 2 2 2

47 host cmd pool mutex G 2 2 20 2 2 2

48 idr lock G 2 2 5 2 2 2

49 info mutex G 5 5 103 5 5 5

50 input mutex G 6 6 55 4 8 8

51 iprune mutex G 2 2 112 2 2 2

52 kexec mutex G 2 2 1103 2 2 2

53 key construction mutex G 2 2 37 2 2 2

54 key mutex G 1 1 67 2 4 4

55 key session mutex G 1 1 1 1 1 1

56 key user keyring mutex G 1 1 14 1 1 1

57 kprobe insn mutex G 2 2 20 2 2 2

58 kprobe mutex G 9 9 21 9 9 9

59 list mutex G 4 4 16 4 4 4

60 lock G 1 1 44 1 1 1

61 loop devices mutex G 1 1 1 1 1 1

62 markers mutex G 4 4 7 4 4 6

63 microcode mutex G 3 3 4 3 3 3

64 minors lock G 3 3 6 3 3 3

65 misc mtx G 4 4 46 3 5 5

66 mm all locks mutex G 1 1 2 1 2 2

67 module mutex G 5 5 113 4 6 6

68 mon lock G 4 4 6 4 4 4

69 mousedev table mutex G 2 2 9 2 2 2

70 mtrr mutex G 2 2 29 2 2 2

71 net mutex G 11 11 121 11 11 11

72 nf ct ext type mutex G 2 2 16 2 2 2

73 nf ct helper mutex G 2 2 8 2 2 2

74 nf ct proto mutex G 4 4 8 4 4 4

75 nf hook mutex G 2 2 23 2 2 2

76 nf log mutex G 5 5 14 5 5 5

www.manaraa.com

73

77 nf sockopt mutex G 3 3 9 3 3 3

78 nfnl mutex G 1 1 14 5 7 7

79 nfs callback mutex G 2 2 115 2 2 2

80 nlm file mutex G 3 3 58 3 3 3

81 nlm host mutex G 3 3 31 3 3 3

82 nlmsvc mutex G 2 2 13 2 2 2

83 notify lock G 2 2 7 2 2 2

84 nvm mutex G 1 2 7 5 6 6

85 ops mutex G 6 6 89 6 6 6

86 osc lock G 2 2 7 2 2 2

87 pci hp mutex G 2 2 7 2 2 2

88 pci remove rescan mutex G 3 3 3 3 3 3

89 pcpu alloc mutex G 2 2 544 2 2 2

90 percpu counters lock G 3 3 50 3 3 3

91 performance mutex G 4 4 8 4 4 4

92 phy fixup lock G 2 2 18 2 2 2

93 pid caches mutex G 1 1 7 1 1 1

94 pm mutex G 9 9 14 9 9 9

95 pmc reserve mutex G 1 2 4 1 2 2

96 pnp res mutex G 2 2 8 2 2 2

97 polldev mutex G 2 2 4 2 2 2

98 pools lock G 3 3 19 3 3 3

99 port mutex G 2 2 14 2 2 2

100 preset mutex G 3 3 29 3 3 3

101 probing active G 1 2 8 2 5 5

102 profile flip mutex G 2 2 2 2 2 2

103 psmouse mutex G 7 7 7 7 7 7

104 queue handler mutex G 3 3 3 3 3 3

105 rate ctrl mutex G 3 3 13 3 3 3

106 rcu barrier mutex G 1 1 210 1 1 1

107 register mutex G 24 24 63 24 24 32

108 relay channels mutex G 6 6 17 6 6 6

109 rfkill global mutex G 11 11 27 11 11 11

110 rng mutex G 5 5 13 5 5 5

www.manaraa.com

74

111 rsrc mutex G 9 9 13 9 9 9

112 rtnl mutex G 2 1 188 93 97 98

113 sched domains mutex G 2 2 10 2 2 2

114 sched register mutex G 4 4 17 4 4 4

115 sd ref mutex G 4 4 10 4 4 5

116 serial mutex G 2 2 10 2 2 2

117 serio mutex G 5 5 11 5 5 5

118 setup lock G 2 2 44 2 2 2

119 shares mutex G 1 1 2 1 1 1

120 shmem swaplist mutex G 3 4 5 3 4 4

121 show mutex G 1 1 1 1 1 1

122 smp alt G 3 3 7 3 3 3

123 snd card mutex G 9 9 99 9 9 9

124 sound mutex G 5 5 19 5 5 5

125 sr ref mutex G 3 3 5 3 3 3

126 strings G 2 2 13 2 2 2

127 svc pool map mutex G 3 3 132 3 3 3

128 swapon mutex G 1 1 2 0 2 2

129 sysdev drivers lock G 5 5 58 5 5 5

130 sysfs bin lock G 3 3 530 3 3 3

131 sysfs mutex G 9 10 544 15 16 16

132 sysfs rename mutex G 3 3 4 3 3 3

133 sysfs workq mutex G 2 2 2 2 2 2

134 text mutex G 7 7 33 7 7 9

135 therm cpu lock G 2 2 2 2 2 2

136 thermal list lock G 5 5 21 5 5 5

137 trace types lock G 11 11 13 10 12 12

138 tracepoints mutex G 6 6 114 6 6 8

139 tty mutex G 7 7 20 6 8 8

140 tunnel4 mutex G 2 2 4 2 2 2

141 usb bus list lock G 7 7 9 7 7 7

142 usbfs mutex G 2 2 2 2 2 2

143 usblp mutex G 3 3 3 3 3 3

144 userspace mutex G 2 2 2 2 2 2

www.manaraa.com

75

145 usu probe mutex G 2 2 2 2 2 2

146 vlan ioctl mutex G 1 1 1 1 1 1

147 xfrm cfg mutex G 0 0 0 0 0 0

148 zisofs zlib lock G 1 1 1 1 1 1

1 Scsi Host T 9 9 47 9 9 9

2 acpi battery T 3 3 14 3 3 3

3 acpi ec T 5 5 19 5 5 6

4 acpi power resource T 5 5 34 5 5 5

5 acpi video bus T 3 3 7 3 3 3

6 aer rpc T 1 1 1 1 1 1

7 agp front data T 4 4 4 4 4 4

8 ath5k softc T 7 7 9 7 7 7

9 atkbd T 1 1 1 1 1 1

10 autofs sb info T 6 6 19 6 6 6

11 azx T 2 2 2 2 2 2

12 backlight device T 9 9 17 9 9 9

13 bin buffer T 1 1 1 1 1 1

14 block device T 12 12 91 12 12 12

15 cfg80211 registered device T 7 6 50 39 43 43

16 cgroup subsys T 2 2 9 3 5 5

17 class private T 4 4 889 4 4 4

18 cpu dbs info s T 2 2 2 2 2 2

19 dock station T 3 3 21 3 3 3

20 dquot T 3 3 10 3 3 3

21 drm device T 81 82 120 81 82 83

22 drm mode config T 29 29 125 29 29 46

23 elevator queue T 3 3 72 3 3 3

24 evdev T 5 5 9 5 5 5

25 eventpoll T 2 2 4 2 2 2

26 ext3 inode info T 4 4 42 4 4 6

27 fb info T 2 3 21 2 3 3

28 ff device T 3 3 3 3 3 3

29 fsnotify group T 4 4 155 4 4 4

30 hda bus T 3 3 604 3 3 4

www.manaraa.com

76

31 hda codec T 20 20 81 20 20 20

32 hiddev T 2 2 3 2 2 2

33 i2c adapter T 2 2 127 2 2 3

34 idmap T 3 3 39 3 3 3

35 ieee80211 local T 19 19 63 19 19 22

36 inode T 101 105 1273 115 136 154

37 inode security struct T 1 1 10 1 1 1

38 inotify handle T 11 11 225 11 11 11

39 input dev T 8 8 60 8 8 8

40 journal t T 3 3 25 8 11 18

41 kcopyd job T 1 1 6 1 1 1

42 key user T 1 1 7 1 1 1

43 kobj map T 3 3 158 3 3 3

44 loop device T 4 5 5 4 5 5

45 mapped device T 3 3 6 3 3 3

46 mddev t T 4 3 15 11 14 14

47 mii bus T 4 4 23 4 4 4

48 mm context t T 2 2 20 2 2 2

49 mon reader bin T 3 3 3 3 3 3

50 mousedev T 5 5 16 5 5 7

51 msdos sb info T 1 1 24 3 5 5

52 netlink sock T 2 2 8 2 2 2

53 nlm file T 4 4 55 4 4 4

54 nlm host T 1 1 19 1 1 1

55 ops list T 4 4 7 4 4 4

56 packet sock T 3 3 5 3 3 3

57 pci vpd pci22 T 2 2 2 2 2 2

58 pcmcia socket T 15 15 21 15 15 15

59 perf counter T 5 6 80 5 6 6

60 perf counter context T 6 6 77 6 6 6

61 phy device T 11 11 34 11 11 12

62 prop descriptor T 1 1 2 1 1 1

63 ps2dev T 2 2 81 2 2 2

64 quota info T 13 13 158 13 13 13

www.manaraa.com

77

65 request queue T 3 3 69 3 3 3

66 rfkill data T 5 5 33 5 5 5

67 ring buffer T 1 1 4 1 1 1

68 rtc device T 9 9 23 9 9 10

69 seq file T 1 1 1 1 1 1

70 serio T 6 5 17 4 7 7

71 snd card T 1 1 2 0 2 2

72 snd hwdep T 2 2 2 2 2 2

73 snd info entry T 1 1 1 1 1 1

74 snd mixer oss T 2 2 2 2 2 2

75 snd pcm T 4 4 6 4 4 4

76 snd pcm oss runtime T 2 2 19 2 2 3

77 snd pcm oss stream T 3 3 4 3 3 3

78 snd seq client T 4 4 7 4 4 4

79 snd seq queue T 1 1 5 1 1 1

80 snd timer user T 1 1 1 1 1 1

81 spi transport attrs T 1 1 3 1 1 1

82 srcu notifier head T 2 2 12 2 2 2

83 srcu struct T 1 1 14 1 1 1

84 stat session T 3 3 6 2 4 4

85 super block T 2 2 47 25 29 29

86 superblock security struct T 2 2 6 2 2 2

87 svc xprt T 1 1 4 1 1 1

88 task struct T 3 3 5 3 3 3

89 thermal zone device T 3 3 13 3 3 3

90 trace iterator T 2 2 2 2 2 2

91 tty audit buf T 5 5 72 5 5 5

92 tty port T 2 2 2 2 2 2

93 tty struct T 26 25 157 27 29 32

94 uart state T 14 15 38 15 15 15

95 unix sock T 4 4 8 4 4 4

96 us data T 7 7 11 6 8 8

97 usb device T 1 1 2 0 2 2

98 usb hub T 2 2 32 2 2 2

www.manaraa.com

78

99 usblp T 5 5 5 5 5 5

100 xt af T 12 14 85 11 15 15

www.manaraa.com

79

APPENDIX B. COMPLETE LIST OF MATCHING PAIR PROPERTY

PROOFING RESULT

A web site containing the complete result of 3 versions of Linux (2.26, 2.28, 2.31) has

been build and hosted. This site is constructed to help research and developer quickly read,

understand and prove the results provided my this research. Information are organized for

different versions of Linux. For each version, a complete list of signatures are provided based

on its type. On the paper designed for each signature, the Matching Pair Graph is shown along

with a table containing the list of all functions in MPG. A snapshot of the CFG and the ETG

for each function are also presented. By clicking the snapshot, a larger and more readable

figure will shown. To further help understand the event flow, source file name and path are

provided. Source code can be viewed by click on the file name.

An serial of example pages of the web site are shown blow.

Link to the entire web site: http://dl.dropbox.com/u/35447145/index.html

http://dl.dropbox.com/u/35447145/index.html

www.manaraa.com

80

Matching Pair Property for 3 versions of Linux

Versions

Linux2.6.26

Linux2.6.28

Linux2.6.31

Figure B.1 Main index

www.manaraa.com

81

All > Linux 2.6.31

globals

acpi_device_lock

acpi_link_lock

active_counters

afinfo_mutex

agp_fe.agp_mutex

allocated_ptys_lock

all_stat_sessions_mutex

attribute_container_mutex

audit_cmd_mutex

audit_filter_mutex

bio_slab_lock

blk_tree_mutex

block_class_lock

brd_devices_mutex

br_ioctl_mutex

bsg_mutex

btrace_mutex

callback_mutex

cdrom_mutex

cfg80211_mutex

cgroup_mutex

chrdevs_lock

cm_sbs_mutex

con_buf_mtx

core_lock

cpufreq_governor_mutex

cpuidle_lock

cpu_add_remove_lock

cpu_hotplug.lock

crypto_default_rng_lock

dbs_mutex

dcookie_mutex

device_add_lock

dlci_ioctl_mutex

dnotify_mark_mutex

dpm_list_mtx

dst_gc_mutex

epmutex

evdev_table_mutex

event_mutex

ext_devt_mutex

fsnotify_grp_mutex

fw_lock

genl_mutex

global_host_template_mutex

hash_mutex

hash_resize_mutex

hid_open_mut

host_cmd_pool_mutex

idr_lock

info_mutex

input_mutex

iprune_mutex

kexec_mutex

key_construction_mutex

key_mutex

key_session_mutex

key_user_keyring_mutex

kprobe_insn_mutex

kprobe_mutex

list_mutex

lock

loop_devices_mutex

markers_mutex

microcode_mutex

minors_lock

misc_mtx

mm_all_locks_mutex

module_mutex

mon_lock

mousedev_mix.mutex

mousedev_table_mutex

mtrr_mutex

net_mutex

nfnl_mutex

Figure B.2 List of all signatures for an version of Linux, global signature and type signature

are listed separately

www.manaraa.com

82

All > Linux 2.6.31 > journal_t.j_barrier

Signature: journal_t.j_barrier

Matching Pair Graph (MPG)

MPG Function Information

Function Name Control Flow Graph (CFG) Event Trace Graph (ETG) Source Code

journal_unlock_updates linux_2.6.31\fs\jbd\transaction.c

ext3_quota_on linux_2.6.31\fs\ext3\super.c

ext3_bmap linux_2.6.31\fs\ext3\inode.c

ext3_change_inode_journal_flag linux_2.6.31\fs\ext3\inode.c

ext3_mark_recovery_complete linux_2.6.31\fs\ext3\super.c

journal_lock_updates linux_2.6.31\fs\jbd\transaction.c

ext3_freeze linux_2.6.31\fs\ext3\super.c

ext3_ioctl linux_2.6.31\fs\ext3\ioctl.c

ext3_unfreeze linux_2.6.31\fs\ext3\super.c

Figure B.3 Main page for a signature, MPG for the signature as well as the CFG and ETG

for each function in MPG are listed in a table. Link to the source code are also

listed

www.manaraa.com

83

Figure B.4 Control flow graph example after click the CFG link for any function

www.manaraa.com

84

BIBLIOGRAPHY

[1] Ball, T., Majumdar, R., Millstein, T., and Rajamani, S. K. (2001). Automatic predicate

abstraction of c programs. In Proceedings of the ACM SIGPLAN 2001 conference on Pro-

gramming language design and implementation, PLDI ’01, pages 203–213, New York, NY,

USA. ACM.

[2] Ball, T. and Rajamani, S. K. (2002). The slam project: debugging system software via

static analysis. SIGPLAN Not., 37(1):1–3.

[3] Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D.,

and Rival, X. (2003). A static analyzer for large safety-critical software. In Proceedings of

the ACM SIGPLAN 2003 conference on Programming language design and implementation,

PLDI ’03, pages 196–207, New York, NY, USA. ACM.

[4] Chaki, S., Clarke, E., Groce, A., Jha, S., and Veith, H. (2004). Modular verification of

software components in c. Software Engineering, IEEE Transactions on, 30(6):388 – 402.

[5] Chaki, S., Clarke, E. M., Ouaknine, J., Sharygina, N., and Sinha, N. (2005). Concurrent

software verification with states, events, and deadlocks. Formal Asp. Comput., 17(4):461–

483.

[6] Cherem, S., Princehouse, L., and Rugina, R. (2007a). Practical memory leak detection

using guarded value-flow analysis. In Proceedings of the 2007 ACM SIGPLAN conference

on Programming language design and implementation, PLDI ’07, pages 480–491, New York,

NY, USA. ACM.

[7] Cherem, S., Princehouse, L., and Rugina, R. (2007b). Practical memory leak detection

using guarded value-flow analysis. SIGPLAN Not., 42(6):480–491.

www.manaraa.com

85

[8] Coverity. Coverity prevent. http://www.coverity.com/products/coverity-prevent.html.

[9] Das, M., Lerner, S., and Seigle, M. (2002). Esp: path-sensitive program verification in

polynomial time. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming

language design and implementation, PLDI ’02, pages 57–68, New York, NY, USA. ACM.

[10] DeMartini, C., Iosif, R., and Sisto, R. (1999). A deadlock detection tool for concurrent

java programs. Softw. Pract. Exper., 29(7):577–603.

[11] Dowson, M. (1997). The ariane 5 software failure. SIGSOFT Softw. Eng. Notes, 22(2):84.

[12] Eaddy, M., Zimmermann, T., Sherwood, K. D., Garg, V., Murphy, G. C., Nagappan, N.,

and Aho, A. V. (2008). Do crosscutting concerns cause defects? IEEE Trans. Softw. Eng.,

34(4):497–515.

[13] Engler, D., Chelf, B., Chou, A., and Hallem, S. (2000a). Checking system rules using

system-specific, programmer-written compiler extensions. In Proceedings of the 4th confer-

ence on Symposium on Operating System Design & Implementation - Volume 4, OSDI’00,

pages 1–1, Berkeley, CA, USA. USENIX Association.

[14] Engler, D., Chelf, B., Chou, A., and Hallem, S. (2000b). Checking system rules using

system-specific, programmer-written compiler extensions. In OSDI’00: Proceedings of the

4th conference on Symposium on Operating System Design & Implementation, pages 1–1.

[15] ENSOFT. EnSoft Corp. http://www.ensoftcorp.com.

[16] Evans, D. and Larochelle, D. (2002). Improving security using extensible lightweight static

analysis. Software, IEEE, 19(1):42–51.

[17] Ferrante, J., Ottenstein, K. J., and Warren, J. D. (1987). The program dependence graph

and its use in optimization. ACM Trans. Program. Lang. Syst., 9(3):319–349.

[18] Flanagan, C. and Qadeer, S. (2002). Predicate abstraction for software verification. SIG-

PLAN Not., 37(1):191–202.

www.manaraa.com

86

[19] Gui, K. and Kothari, S. (2010). A 2-phase method for validation of matching pair property

with case studies of operating systems. In ISSRE, pages 151–160. IEEE Computer Society.

[20] Hausler, P., Pleszkoch, M., Linger, R., and Hevner, A. (1990). Using function abstraction

to understand program behavior. Software, IEEE, 7(1):55 –63.

[21] Heine, D. L. and Lam, M. S. (2003). A practical flow-sensitive and context-sensitive c and

c++ memory leak detector. SIGPLAN Not., 38(5):168–181.

[22] Heine, D. L. and Lam, M. S. (2006). Static detection of leaks in polymorphic containers.

In Proceedings of the 28th international conference on Software engineering, ICSE ’06, pages

252–261, New York, NY, USA. ACM.

[23] Henzinger, T. A., Jhala, R., Majumdar, R., and Sutre, G. (2002). Lazy abstraction. In

Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, POPL ’02, pages 58–70, New York, NY, USA. ACM.

[24] Hind, M., Burke, M., Carini, P., and Choi, J.-D. (1999). Interprocedural pointer alias

analysis. ACM Trans. Program. Lang. Syst., 21(4):848–894.

[25] Joshi, P., Naik, M., Sen, K., and Gay, D. (2010). An effective dynamic analysis for de-

tecting generalized deadlocks. In Proceedings of the eighteenth ACM SIGSOFT international

symposium on Foundations of software engineering, FSE ’10, pages 327–336, New York, NY,

USA. ACM.

[26] Klocwork. Klocwork k7. http://www.klocwork.com/.

[27] Lam, M. S., Whaley, J., Livshits, V. B., Martin, M. C., Avots, D., Carbin, M., and Unkel,

C. (2005). Context-sensitive program analysis as database queries. In PODS ’05: Proceedings

of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database

systems, pages 1–12.

[28] Naik, M., Park, C.-S., Sen, K., and Gay, D. (2009). Effective static deadlock detection. In

Proceedings of the 31st International Conference on Software Engineering, ICSE ’09, pages

386–396, Washington, DC, USA. IEEE Computer Society.

www.manaraa.com

87

[29] Neginhal, S. and Kothari, S. (2006). Event views and graph reductions for understanding

system level c code. In ICSM ’06: Proceedings of the 22nd IEEE International Conference

on Software Maintenance, pages 279–288.

[30] Quinn, C., Vilkomir, S., Parnas, D., and Kostic, S. (2006). Specification of software

component requirements using the trace function method. In ICSEA ’06: Proceedings of the

International Conference on Software Engineering Advances, page 50.

[31] SciTools. Scitools understand. http://www.scitools.com/.

[32] Takahashi, J., Kojima, H., and Furukawa, Z. (2008). Coverage based testing for concurrent

software. In ICDCS Workshops, pages 533–538. IEEE Computer Society.

[33] Taylor, R. N. (1983-04-01). Complexity of analyzing the synchronization structure of

concurrent programs. Acta Informatica, 19(1):57–84.

[34] Volanschi, N. (2006). A portable compiler-integrated approach to permanent checking.

In ASE ’06: Proceedings of the 21st IEEE/ACM International Conference on Automated

Software Engineering, pages 103–112.

[35] Xie, Y. and Aiken, A. (2005). Context- and path-sensitive memory leak detection. In

Proceedings of the 10th European software engineering conference held jointly with 13th ACM

SIGSOFT international symposium on Foundations of software engineering, ESEC/FSE-13,

pages 115–125, New York, NY, USA. ACM.

[36] Xie, Y., Chou, A., and Engler, D. R. (2003). Archer: using symbolic, path-sensitive

analysis to detect memory access errors. In ESEC / SIGSOFT FSE, pages 327–336. ACM.

[37] Yang, J., Twohey, P., Engler, D., and Musuvathi, M. (2006). Using model checking to find

serious file system errors. ACM Trans. Comput. Syst., 24(4):393–423.

[38] Yorsh, G., Ball, T., and Sagiv, M. (2006). Testing, abstraction, theorem proving: better

together! In ISSTA ’06: Proceedings of the 2006 international symposium on Software

testing and analysis, pages 145–156.

	2012
	Proving safety properties of software
	Kang Gui
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. OVERVIEW
	1.1 Dissertation Outline

	2. RELATED WORKS
	2.1 Finding Defects of Large Source Code
	2.2 Graph Based Program Analysis
	2.3 Events Based Program Analysis
	2.4 Function Summary
	2.5 Other Related Works

	3. A 2-PHASE METHOD FOR VALIDATION OF MATCHING PAIR PROPERTY WITH CASE STUDIES OF OPERATING SYSTEMS
	3.1 An Overview of the 2-Phase Method
	3.1.1 Two Phases

	3.2 Macro Analysis Framework
	3.2.1 Signatures for Matching Pair Instances
	3.2.2 Matching Pair Graph
	3.2.3 Formal Definition of MPG(X)
	3.2.4 Computing MPG(X)

	3.3 Micro Analysis Framework
	3.3.1 Event-Based Path Optimization
	3.3.2 Path Analysis Method

	3.4 Validation Using the 2-Phase Method
	3.4.1 The Validation Process Using PA Tables
	3.4.2 Important Optimizations for Validation

	3.5 Case Study Results
	3.5.1 Xinu Case Study
	3.5.2 An Example of Validation
	3.5.3 Mutex Synchronization in Linux

	3.6 Conclusion

	4. PATTERN BASED EMPIRICAL STUDY TO ASSIST WITH ANALYSIS OF MATCHING PAIR PROPERTY
	4.1 Identifier Pattern
	4.2 Matching Pair Graph Pattern
	4.2.1 Matching Pair Graph
	4.2.2 Definition of MPG(X)
	4.2.3 Computing MPG(X)

	4.3 Empirical Study Setup
	4.3.1 Experimental Setup
	4.3.2 Identification of Lock Operations

	4.4 Experimental Results
	4.4.1 Identifier Pattern Usage
	4.4.2 MPG Pattern Size

	4.5 Conclusion and Future Works

	5. PROVING MATCHING PAIR PROPERTY - A CASE STUDY WITH LINUX KERNEL
	5.1 Challenges of Matching Pair Property
	5.2 Micro Model
	5.2.1 Event Flow Graph
	5.2.2 Event Trace Graph

	5.3 Macro Model
	5.3.1 Matching Pair Graph

	5.4 Proving Matching Event Properties
	5.4.1 Event Signature
	5.4.2 Successor and Predecessor Pattern
	5.4.3 Matching Difficulty Classification

	5.5 Linux Mutex Matching Evaluation
	5.5.1 Linux Mutex Matching Evolution
	5.5.2 ETG Reduction
	5.5.3 Linux Case Analysis

	5.6 Conclusion and Future Work

	6. SUMMARY AND CONTRIBUTION
	A. LIST OF SIGNATURES AND THEIR MATCHING PAIR PROPERTIES
	B. COMPLETE LIST OF MATCHING PAIR PROPERTY PROOFING RESULT
	BIBLIOGRAPHY

